

Fachhochschule der Wirtschaft

-FHDW-

Mettmann

Master’s Thesis

Topic:

Conception, Evaluation and Prototyping of a

Distributed Patch Deployment and Control System

Examiner:

 Dr. rer. Nat. Dr. Markus Borschbach

Secondary Examiner:

Prof. Dr. Philipp Rohde

Author:

Steven Datzmann

Suitbertusstraße 20

40223 Düsseldorf

Matriculation Number: 9152264

IT-Management and Information Systems

Date of submission:

08.05.2017

Executive Summary II

Executive Summary

Starting with the industrialization, process automation is key to strengthen a company’s

competitive ability on the market for manufacturing businesses until today. But it is

strangely enough often left aside in the software sector. Many tasks in maintaining soft-

ware solutions are still conducted more or less manually and are prone to simple mis-

takes which could have been avoided by reducing human interaction. This leads to a

loss in productivity and a degradation in software quality for supplying maintenance.

Against this background, automation of repetitive, laborious and error-leaden processes

is a crucial task to increase competitive ability and providing professional maintenance

to software solutions.

This thesis develops a concept for automating the vital process of patch deployment

based on a case study. The case study describes the manual process of creating, deliv-

ering and installing patches which are currently in use. Out of this case study, key goals

are derived which would aid in reducing or outright eliminate errors in the process.

Guided by the limited, existing, research on automating this part of the software mainte-

nance process, existing solutions are examined. After evaluation of these solutions, im-

plementation into a generalized, streamlined workflow concept is discussed.

Results of this work include a prototype which partially automates the processes of patch

creation and fully automates delivery and installation. Also, the impact of using such a

solution is discussed in regard to a reduction in necessary effort to maintain software

from a software suppliers and customers view.

Table of Contents III

Table of Contents

Executive Summary ... II

Table of Contents ... III

List of Tables ... V

List of Figures ... VI

List of Abbreviations .. VIII

1 Introduction ... 1

2 Case Study .. 2

2.1 Infrastructure... 3

2.2 Workflow ... 4

2.3 Problem and Goal Definition ... 7

3 Elementary Concepts ... 9

3.1 Patch Deployment .. 9

3.2 Deployment Pipeline ... 11

3.3 Hashing .. 14

3.4 Compression... 16

4 Evaluation of existing solutions .. 20

4.1 Filesystem .. 20

4.2 Git ... 23

4.3 Subversion .. 27

4.4 Database .. 30

4.5 Database Migration Tools ... 32

5 Conception .. 34

5.1 Architecture and Platform Choice .. 34

5.2 Process Modelling .. 36

5.3 Integration of Solutions ... 42

5.4 Data model ... 44

6 Prototyping.. 48

6.1 Delta Analysis ... 50

6.2 Create Patch Package .. 56

6.3 Installation .. 61

Table of Contents IV

7 Testing ... 66

7.1 Boundaries and Limitations ... 66

7.2 Results.. 69

8 Estimated Impact .. 71

8.1 Quantitative Impact ... 71

8.2 Qualitative Impact ... 73

9 Conclusion .. 75

9.1 Summary .. 75

9.2 Outlook ... 77

Appendix .. 78

List of Cited Literature ... 82

Ehrenwörtliche Erklärung ... 86

List of Tables V

List of Tables

Table 1: Character Checksum Example ... 14

Table 2: Character SHA-1 Example ... 15

Table 3: Huffman coding symbols .. 18

Table 4: Performed changes to example database .. 30

Table 5: OSC Table Change Phases Overview ... 33

Table 6: Patch Table .. 49

Table 7: Connector Application State ... 49

Table 8: MySQL “SHOW FULL COLUMNS” Result: .. 53

Table 9: Connector Create Patch Form ... 56

Table 10: Tests .. 67

Table 11: Test Results ... 69

Table 10: Patch Effort: ... 71

Table 11: Patch Effort Adjusted: .. 72

List of Figures VI

List of Figures

Figure 1: LAMP Stack: ... 3

Figure 2: Patch Workflow: .. 4

Figure 3: Patch Workflow: .. 7

Figure 4: Prototyping Software Life cycle: .. 9

Figure 5: Continuous Delivery Promotion: .. 12

Figure 6: Deflate compression block: ... 17

Figure 7: Huffman tree: .. 19

Figure 8: Basic filesystem version example: .. 20

Figure 9: Advanced filesystem version example: ... 21

Figure 10: Git file Status: ... 25

Figure 11: Git remote repository: ... 26

Figure 12: Subversion repository: .. 27

Figure 13: Subversion locks: .. 28

Figure 14: Basic database version example: .. 30

Figure 15: Patch Library: .. 34

Figure 16: Patch Connector: .. 35

Figure 17: Filesystem Delta Analysis: .. 37

Figure 18: Database Delta Analysis: .. 38

Figure 19: Patch Package Contents:.. 40

Figure 20: Patch Installation Workflow: .. 41

Figure 21: Patch Structure XML Example: ... 44

Figure 22: Patch Structure JSON Example: ... 45

Figure 23: Patch Structure JSON Example Extended: ... 46

Figure 24: Patch Structure XML Example Files: ... 47

Figure 25: Connector Client - GUI: ... 48

Figure 26: Connector Frontend - getDelta: ... 50

Figure 27: Connector Backend – File Listing: ... 50

Figure 28: Connector Backend – File Delta: ... 51

Figure 29: Connector Backend – Database Listing: ... 52

Figure 30: Connector Database Structure Example: .. 54

Figure 31: Connector Backend – Database Delta: ... 54

Figure 32: Connector Backend – Delta Removed: ... 55

Figure 33: Connector Backend – Delta Result: .. 56

Figure 34: Connector Frontend – Show Database Changes: 57

Figure 35: Connector Frontend – Store: ... 57

Figure 36: Connector Backend – Create Patch Package: Files 58

Figure 37: Connector Backend – Create Patch Package: Database 58

Figure 38: Connector Backend – Create Patch Package: Structure 59

Figure 39: Connector Backend – Create Patch Package: Metadata 59

Figure 40: Library – Store Endpoint ... 60

List of Figures VII

Figure 41: Connector Backend – File Backup: ... 62

Figure 42: Connector Backend – Table Preparation .. 64

List of Abbreviations VIII

List of Abbreviations

CPU Central Processing Unit

CVS Concurrent Versions System

DB DataBase

GPU Graphics Processing Unit

GUI Graphical User Interface

HTML HyperText Markup Language

JSON JavaScript Object Notation

LAMP Linux / Apache / MySQL / PHP

LHM Large Hadron Migrator

MD Message Digest

MIT Massachusetts Institute of Technology

OS Operating System

OSC Online Schema Change

PDF Portable Document Format

PHP PHP Hypertext Preprocessor

SHA Secure Hashing Algorithm

SQL Structured Query Language

URL Uniform Resource Locator

VCS Version Control System

XML Extensible Markup Language

Introduction 1

1 Introduction

It is an accepted fact, that repetitive processes performed by human beings bear the

probability of human error. This error leads to a loss of efficiency for the performed pro-

cess which then results in further degradation of productivity, due to necessary corrective

measures which have to be taken in order to rectify said error. Companies tend to mini-

mize errors and thus increase productivity through simplifying and when possible, auto-

mating processes to a point where human interaction is only needed for making

decisions, which cannot or must not be done by the program.

This thesis will focus on optimizing the vital process of patch deployment for software

products to a point where fragile, repetitive parts are solely performed by a prototyped,

specialized software. The only choices left to a human operator should be where and

when a patch will be deployed, not which technical measures need to be taken to do so.

This thesis will be guided by already existing, similar, solutions to parts of the actual

problem at hand and incorporate “state-of-the-art” methods to solve common issues of

patch deployment.

Case Study 2

2 Case Study

This work focuses on solving a given problem based on a specific case study and gen-

eralizing it to provide the solution for patch deployment and control to a wider audience

than just a single case. The following describes the application infrastructure and the

workflow used to create and distribute patches for the application.

The case study’s application is an information portal which is used by banks to facilitate

communication with the customer. As the portal is used for the specialized financial prod-

uct factoring, which basically means selling invoices to a bank to increase liquidity, there

is a high need for constant communication with each customer. Customers need to be

able to upload their invoices reliably and see their invoices status. They must be able to

check their financial situation and related data in the portal application. Due to the finan-

cial nature of displayed information, there is no room for incomplete and/or corrupted

data.

Per the case study, it is assumed that the application can be used as a hosted service

via the software supplier as well as an application which can be installed on the client’s

systems. In the hosted service scenario, the software supplier hosts the application en-

vironment for a customer and is also in charge of keeping their installation up to date. In

the client hosted scenario, the client’s systems have at least a two-stage process of in-

stallation. First, the patch is installed on the test system, where the new functions, as

well as the previously deployed functions, are tested by the client's test team. After all

tests have been concluded positively; the patch is then installed on the productive sys-

tem.

Installation to the productive environment is a business-critical task as it usually involves

a maintenance time window in which the application is not in a stable state and thus not

useable by its users. Furthermore, the entirety of the later on described workflow is

conducted manually. There are no parts which have been automated thus far and as

such there is a high probability of human error. This makes it especially critical, as no

rollback mechanisms are in place, rollbacks are also conducted manually.

Case Study 3

2.1 Infrastructure

The software system that is taken into consideration is based on an HTML5 frontend

which is deployed to the user’s browser. The deployment of the applications frontend is

performed by requesting the application installations URL with a browser and automated

through a PHP backend which serves the required files. The backend system which cre-

ates the mentioned HTML5 frontend also performs other requested actions, like retriev-

ing, storing and processing data. This backend installation is the main component of the

application and thus needs a reliable way of patch deployment.

The PHP backend is installed on an Apache webserver running on a Linux system as an

application server. For persistent storage of data, a MySQL database is used. This da-

tabase is installed on the same host or connected to the Apache host. In general, this is

considered a classic LAMP1 stack environment:

Figure 1: LAMP Stack:

Source: Own illustration based on Dougherty (2001)

This application infrastructure is widely used for internet applications. Per Netcraft, a

grand total of about 52 percent of websites on the internet, which were part of Netcraft’s

analysis used an Apache server and thus a similar setup in 2014.2 Also, the usage of

MySQL as a persistent storage solution is widely adapted as it is the second most used

database per DB-Engines Ranking.3 These facts underline the possibility to adapt fur-

ther results from this thesis to other case studies, as the used infrastructure is not a

special, but a common one.

1 LAMP stands for Linux, Apache, MySQL, PHP (or Pearl).
2 See Netcraft (2014).
3 See DB-Engines (2017).

Case Study 4

2.2 Workflow

In the considered case study the general workflow for creating and distributing a patch

can be divided into three parts, where each part is dependent on the previous one (see

Figure 2):

- Patch Construction:

Bundling of deliverable files into a patch package and creation of informational

material regarding the patches contents.

- Patch Delivery:

Sending of patch packages to customers which have self-hosted applications.

- Patch Installation:

Applying the patches contents to an application installation.

Figure 2: Patch Workflow:

Source: Own illustration

Once the process of finishing development is completed, patch construction begins. Dur-

ing patch construction, a delta analysis of the current application version and the previ-

ous version is conducted. This is performed to determine the necessary changes to the

database and filesystem to turn an application from the previous version into the current

one. Delta analysis consists of analyzing differences in the filesystem, e.g. files new to

the target application version, files changed, files deleted as well as database table and

table relation changes. Table changes may include any kind of table modification from a

simple length change on a character field to the creation of a new table or alteration of

primary keys in the target version of the application. Manual delta analysis is prone to

error due to simple mistakes, e.g. not checking a folder of the installation and thus miss-

Case Study 5

ing a changed file. Results from this operation are compiled into a user-friendly docu-

mentation of the necessary steps of installation as part of the release note. A complete

patch package contains the following parts, further called artifacts of the patch package:

- SQL statements to update the database

- necessary files to overwrite or add

- list of files to remove

- descriptions of new features

- further descriptions of updated or altered functionality

- release note localized for the customers who should receive the patch. If the

customer is in another country, the release note will most often be in English,

otherwise “only” in the target language, for example German.

Compilation of this patch package is mainly done by a programmer of the software sup-

plier as performing the delta analysis, and the creation of SQL statements is a technical

task. Proofreading is done by testers, who also write the customer friendly descriptions

of features and altered functionality. This is the general definition of a patch package. As

an exception to the general definition of patch packages which are independent of the

receiving client, there are also patches which may not be delivered to all customers.

Those packages contain language specific translation packs for example. As a general

rule, special patch packages may only contain changes of data, but no changes of struc-

ture, e.g. contents of a table may be modified, the table itself cannot. This is due to the

fact that a change of structure would most likely break patch compatibility with further

versions.

Artifacts of the patch construction part are then delivered bundled as said patch package

via email to the administrators in charge of application installations. Those administrators

are also in charge of storing the delivered patch packages and must keep track of in-

stalled patches and which patch version also called patch level is present on the test and

the production environments. This part of the workflow is prone to error due to various

reasons, for example, the receiving administrator's e-mail server may reject file

attachments, and thus an alternative has to be used. Another example for a common

problem is simple forgetfulness on the part of the distributor by forgetting to send the

patch to an administrator. This can easily lead to problems installing future patches and

– in a worst-case scenario – corrupt production data.

The Installation of patches is conducted by using the descriptions in the release note and

is identical for all application installations and needs to be done in a sequential manner,

e.g. from application version one to three; one cannot simply skip applying patch two.

Case Study 6

The administrator in charge of an installation waits for approval of installation by the client

and then proceeds per the release note. Problems may occur if the previous step failed

and the administrators in charge tries to apply a patch while missing the previous one

which often leads to an unstable application. Due to arbitrary patch levels on each

customer’s system and different versions in a single customer’s environments, manual

error correction measures conducted by the software supplier in case of a failed patch

installation may prove difficult. In such a case the software supplier then needs to carry

out another delta analysis of the client’s system and the desired application version. Then

the patch distributor needs to trace the steps performed per release note to determine

the cause of the error. This process often proves to be problematic. On the one hand,

the manual analysis is time-consuming on the other hand, there is no specific rollback

procedure. A rollback procedure would describe how to create a partial backup of files

and database parts, e.g. table rows, which are about to change. This way, a failed patch

installation could simply be undone by applying the partial backup to restore the original

files and data. To clean up the application of the partial backup, newly added files would

be deleted and database changes reverted. Without a rollback procedure, however, the

administrators mostly resort to a partial or full database and filesystem backup before

installation of a patch. Partial database backups performed by the administrators are

backups of entire tables instead of the whole database. In the case of a failed patch

installation, this means that rollback of the entire database and filesystem takes as long

as the manual error correction. This, however, depends on the size of the applications

database in question, as some tables may contain gigabytes of data.

Case Study 7

2.3 Problem and Goal Definition

The goal definition of this thesis is mainly derived from the previously explained workflow

as this is to be automated completely, except the creation of release notes. Main prob-

lems which need to be solved or mitigated can also be derived from the workflows de-

scription and the artifacts created during patch construction:

Figure 3: Patch Workflow:

Source: Own illustration

The goals which need to be achieved are defined as follows:

Patch dependencies

The completed software solution needs to keep track of an existing patch package as

well as which patch packages are required as dependencies to be applied before the

patch itself can be implemented to the target installation. This mitigates the necessary

delta analysis which needs to be conducted if a patch fails due to patch application mis-

match by an administrator.

Patch library

A centralized solution is needed which stores constructed patch packages and their re-

lease notes in variously translated forms. This library is intended to replace a part of the

patch delivery process as the actual packages do not need to be stored by administrators

anymore. Newly created patch packages and their release notes need to be able to be

Case Study 8

uploaded to the patch library. This lowers the number of faulty installations due to missing

or forgotten patches, which have to be installed before the most recent patch may be

installed. As the library would keep track of all patches and their dependencies and patch

packages would be retrieved directly from the library.

Patch construction

An environment to create patch packages needs to be created which automatically per-

forms the described delta analysis of the filesystem and the database and creates a

patch package out of the information gathered. This patch package creation utility also

needs to incorporate the previously mentioned dependency associations between patch

packages. This way, all needed files will be included in the patch package, and all de-

pendencies will already be taken into account.

Patch installation

An installation utility is required which automatically performs the necessary actions to

apply the contents of a patch package to the software solution. This means it needs to

update the filesystem and database. To mitigate the problem regarding rollback this utility

also needs to be able to roll back to the previous application version and thus creating a

partial backup of the application before performing the update process. Also, this utility

needs to keep track of the installed version of the application and needs to be able to

connect to the patch library to receive patch packages. The actual installation process

needs to be able to be initiated by an administrator as soon as the patch package is

ready to be delivered.

Elementary Concepts 9

3 Elementary Concepts

This chapter describes the basic concepts used throughout this work. Concepts used

are software development methodologies to match the previously as case study de-

scribed process in a manner similar to abstract processes in literature. In literature, the

whole concept processes regarding software are described as the software lifecycle; this

describes the creation and maintenance of software as a whole.

3.1 Patch Deployment

Patch deployment can be described as the action of rolling out changes which need to

be applied in order to lift a given program to a specific version. This needs to be done

periodically during the standard software maintenance process. This maintenance pro-

cess has different definitions or descriptions in software life cycle methodologies. For

example, in the agile system development life cycle, patch deployment would be the

crucial component to support “operate and support system in production”. In the agile or

continuous delivery life cycles, it would be an element of “release solution”, as patch

deployment is the actual release (installation) of changes.4 This concept is also vital in

more traditional development methodologies like waterfall, prototyping or iterative devel-

opment of software solutions as every development methodology needs maintenance or

release component.5

Figure 4: Prototyping Software Life cycle:

Source: Own illustration based on CMS

4 See Ambler, Scott W. (2012).
5 See Office of Information Services (2008), pp. 1 – 3.

Elementary Concepts 10

The software maintenance process is necessary because software solutions undergo

changes over the life cycle and thus need to be modified while preserving the integrity of

the software solution. There are different types of maintenance:

- Corrective changes

- Adaptive changes

- Perfective changes

Corrective maintenance may need to be conducted to mitigate errors in a software prod-

uct so that it meets its requirements. These changes may need to be applied to an al-

ready deployed and actively used software solution as those errors may only be

encountered in productive use. Adaptive as well as perfective changes are changes

which enhance the software solution. Adaptive changes are necessary changes to ac-

commodate a new environment, e.g. new functionality or changing of software

requirements like the operating system. Adaptive changes are most likely required to

guarantee function of a software solution when its basic requirements are updated, e.g.

the underlying OS is updated, and an adaptive change must be made to ensure ongoing

compatibility with the new OS version. Perfective changes do not alter existing

functionality. Instead, they improve performance, maintainability or other characteristics

of the software solution.6

6 See ISO14764 (1999), pp. 6 – 7.

Elementary Concepts 11

3.2 Deployment Pipeline

In general, a deployment pipeline can be defined as the automated process of necessary

steps to assemble a fully functional software solution and deliver it to the software’s us-

ers. The deployment pipeline starts with committing source code to a version control

system and ends when the software is released to the users. The deployment pipeline

involves building and testing through different stages until completion of the software.7

The term “deployment pipeline” emerged from projects at the company ThoughtWorks

and can be considered a key pattern in continuous delivery of software solution designs.

The deployment pipeline mainly involves automation to ease the process of deploying

changes through different stages of environments, e.g. from development to test and

then production. This automation principle was used to help ThoughtWorks overcome

their struggle with complex and fragile deployments. A key goal of this was to create an

entirely automated process to deliver deployments to any of ThoughtWorks environ-

ments in a fully scripted manner which does not need manual intervention to complete.

To accommodate different environment settings configuration files would be used. The

actual deployment pipeline pattern, described by Farley, starts upon committing changes

to a version control system. The deployment pipeline then creates deployable packages

and runs automated unit tests and other validations, like static code analysis against the

newly created packages. If any of those checks fail, the pipeline stops at this stage. Any

encountered errors must be corrected to proceed past this commit stage. Once all

checks are completed the package is “promoted” to the next stage. In ThoughtWorks

original pipeline the next stage consists of automated acceptance testing and afterward

also automated capacity testing. Once it ran through all stages, it can be deployed on

demand to any other stage of the systems environment for further manual tests, or it can

be deployed to production.8

7 See Farley, David/ Humble, Jez (2010), pp. 106 – 107.
8 See Humble, Jez (2016), Continuous Delivery – Patterns.

Elementary Concepts 12

Figure 5: Continuous Delivery Promotion:

Source: Own illustration reproduced from Humble, Jez (2016) Continuous Delivery

This promotion and stage concept heavily relies on the fact that packages are only built

once and then recycled throughout the rest of the system landscape. It also implies two

other paradigms which should be used according to Jez Humble: “Deploy the same way

to every environment” and “Keep your environments similar.” Both paradigms basically

describe a monoculture of systems as keeping them similar makes the deployment pro-

cess recyclable.9

The deployment pipeline is also an integral part of the continuous delivery pattern, as

this pattern aims for automation of all repetitive, error-prone activities in processes which

are needed to deliver software.10 While a crucial part of continuous delivery, the deploy-

ment pipeline itself also serves additional purposes:

- Automation of build, test and deployment

- Visualizing the progress of software

- Finding and reducing bottlenecks in the deployment process

By providing these additional insights in the deployment and development process, the

deployment pipeline acts as the realization part of a Value Stream Map, which is a key

part of modern business practices.11 Value Stream Mapping was developed in Supply

9 See Humble, Jez (2016), Continuous Delivery – Patterns.
10 See Skelton, Matthew/ O’Dell, Chris, (2016), p. 7.
11 See Skelton, Matthew/ O’Dell, Chris, (2016), p. 27.

Elementary Concepts 13

Chain Development for production management to identify and remove value waste in-

side companies.12 While most modern business practices which target a business within

the manufacturing industry are not directly applicable to software businesses, the com-

mon denominator of a Value Stream Map can help implementing them. This, in turn,

makes it possible to profit from controlling mechanisms which were developed to help

manufacturing companies.

As such the following benefits can be gained by using a build pipeline or a complete

continuous delivery solution which implements one:

- Accelerated Time to Market: The release cycle is reduced drastically as new

versions do not need to be excessively prepared. Average release cycles from

conception to production has decreased from several months to two to five

days.13

- Improved Productivity and Efficiency: Productivity and effectiveness are dras-

tically enhanced by using a continuous delivery solution as it sets up test envi-

ronments automatically. This task was previously a huge time sink for developers

and testers alike.14

- Reliable Releases: The risks of rolling out a release are drastically decreased

as the same scripts which control deployment onto test systems are used to de-

ploy to the productive system afterward. Also, the size of releases is reduced as

their frequency is increased. This results in fewer changes and thus smaller er-

rors if they appear.15

For this thesis, however, the deployment pipeline starts from committing source code to

a version control system and ends when the software is released to various server in-

stallations. This is due to the fact that this thesis considers an HTML5 client and PHP

server application as a use case and the entirety of deployment pipelines is beyond this

thesis scope. Thus, the actual release of client software to the applications users is han-

dled through the PHP server backend. The deployment pipeline is only involved in pre-

paring the software solutions client and not releasing it to the actual users.16

12 See Hines, Peter/ Rich, Nick (1997), p. 46.
13 See Lianping, Chen/ Power, Paddy (2015), pp. 52 – 53.
14 Ibid.
15 Ibid.
16 See Chapter 2.1, figure 1.

Elementary Concepts 14

3.3 Hashing

The process of hashing is used for generating a checksum to verify the integrity of a

given set of data. For example, the most basic form of a checksum for a text file would

be a combination of character counts:

This is a text-based example to demonstrate various checksums, starting from

simple character counts and leading up to message digest techniques.

In this example text a character count based checksum would result in the following

character table:

Table 1: Character Checksum Example

Character e s t a i o c r n m

Count 15 14 13 11 8 6 6 6 6 6

Source: Own illustration

To store this as a checksum, one could simply combine characters and counts like so:

“a11c6e15i8m6n6o6r6s14t13”. Character count based checksums, however, do not

guarantee that the given information is accurate or complete. They only ensure that the

same number of symbols is present in each text with the same character counts. For

instance, the previous example does not consider if a symbol is capitalized or not, the

resulting checksum would be the same either way. To provide a better means to verify

not only the correct amount of symbols but also verify the integrity, e.g. order of symbols

and capitalization of a text file a message digest algorithm can be used. Message digest

algorithms are based on the concept that a single bit alteration in the input message

should result in a completely different checksum output.

The Secure Hash Algorithm, SHA, is designed for computation of a condensed repre-

sentation of a set of binary data. It is based on the same principles as the MD4 message

digest algorithm created by Ronald L. Rivest of MIT. The resulting message representa-

tion SHA generates is a 160-bit output which can be used to verify the contents of a set

of data. The security of SHA is derived from the computational difficulty to find two dif-

ferent messages which result in the same message digest.17

17 See Jones, P. (2001), pp. 1 – 2.

Elementary Concepts 15

SHA can currently be found in four different Versions (oldest to newest): SHA-0, SHA-1,

SHA-2 (also known as SHA-256 among others) and SHA-3. To revert to the character

checksum example, the following table compares the SHA-1 value of the sample text

starting with an uppercase “T” and the SHA-1 value of the same text starting with a low-

ercase “t”:

Table 2: Character SHA-1 Example

Text SHA-1 hash value

Upper 7ad29cfc 0fc9ee1f 34274da3 3a488546 53781ac6

Lower 6f9b39d8 fe18ad3e df40032a c632d04c 5daf803b

Source: Own illustration

As it can be clearly seen in the above table both SHA-1 values, differ greatly as even a

single bit difference results in completely different hash values by design of the algorithm.

Even though SHA-1 is an improvement to its precursory algorithms like MD4 or MD5, it

is by no means secure by today’s standards. Security in message digest algorithms can

be best described by the difficulty to forge two distinct messages that result in the same

message digest value; this is called a collision. Such collisions have been shown to be

practically creatable with consumer grade GPUs for MD4 and MD5 algorithms.18

However, since 2005 SHA-1 was only vulnerable to a collision in theory. In late February

of 2017 researchers from Google have proven in the field that SHA-1 is vulnerable to

collision attacks by using Googles own computational resources and targeting weak-

nesses in the SHA-1 algorithm. They proved that it is possible to create colliding PDF

documents on demand by using the equivalent computational power of 64 GPUs for ten

days. This resulted in not only further deprecation of SHA-1 in the eyes of developers

but also proved that it can be broken and hence must not be used in a future implemen-

tation and should be phased out of existing implementations.19

For actual usage and cryptographically secure means of obtaining a checksum to digital

content, binary or otherwise, SHA-256 or similar algorithms should be used. In contrary

to SHA-1s 160-bit message digest value, SHA-256 produces, as its name suggests, a

256-bit message digest value. Other algorithms, which are also approved by the Federal

18 See Intel (2013).
19 See Shattered.it (2017).

Elementary Concepts 16

Information Processing Standard of the USA are SHA-224, SHA-256, SHA-384 and

SHA-512 which all have message digest values corresponding to their naming scheme.20

3.4 Compression

Transferring large amounts of data, can lead to many different problems. For example,

it is possible that the target system only has a very limited amount of free storage capac-

ity or that the mail rules state that no files larger than a certain size are allowed to be

received. Furthermore, the bigger the file, the longer a transfer will take. This makes it

essential to reduce the size of data without compromising the files themselves. This re-

duction of file size without compromising said files is called lossless compression. To

reduce the size of data, a variety of algorithms can be applied. Some of those will be

discussed below. Data compression can also be seen in an economical context as it

trades traffic capacity versus CPU usage.

Deflate

Most common compression techniques, such as ZIP, GZIP, and its derivatives, rely on

the deflate algorithm.21 This algorithm basically reduces redundancy in a given data set

while preserving all information and thus is considered a lossless data compression al-

gorithm. Deflate can be seen as an algorithmic frame for compression steps as it does

not actually compress data by itself.22 Instead, it uses different algorithms in a two-step

process to compress data. Upon acting on a dataset which should be compressed the

dataset will be split into blocks. Blocks are identified via a 3-bit header. This header con-

tains all information on how to process the current block. For example, this information

may declare that the next block is raw, uncompressed, data or a compressed block with

a Huffman table supplied.

20 See Hansen, T. (2011), p. 4.
21 See Deutsch, P. (1996b), p 1.
22 See Deutsch, P. (1996a), p 4.

Elementary Concepts 17

Figure 6: Deflate compression block:

Source: Own illustration

Actual compression is also a two-stage process, the first step is “duplicate string elimi-

nation,” in this stage all duplicated strings in a given block are replaced with a placeholder

that uses less space than the string it replaces. Algorithms used during this stage are

LZ77 or LZ78. Both algorithms are also commonly known as LZ1 and LZ2. They are the

basis for many variations of lossless data compression. Both create a dictionary of data

strings, where the entries in said dictionary are the strings that have to be replaced. After

creation of said dictionary, the algorithms replace occurrences of the dictionary entries

in the dataset with references to the dictionary entry.23 Once this processing of blocks is

finished the “bit reduction” stage begins. In that compression stage, commonly used

symbols in a given block will be replaced with shorter ones. This is done by using Huff-

man coding.24

Huffman coding

This variation of encoding is used to reduce redundancy in a given set of binary data.

Usually every binary word of a set of binary data is of the same length. Huffman coding

describes the principle to reduce the amount of redundancy by assigning unique codes

to symbols of said data.25 This process results in a binary tree, the so-called Huffman

tree. By weighting a Huffman tree, which means using the smallest codes for the most

frequent encountered symbols it is possible to compress data. Consider the following

example:

TEST TEXT FOR TESTING PURPOSES

23 See Lempel, Abraham/ Ziv, Jacob (1977).
24 See Deutsch, P. (1996a), p 1 – 2.
25 See Huffman, David A (1952) p. 1098 – 1100.

Elementary Concepts 18

Symbols of this text are characters and can be encoded as follows (most occurrences,

results in smallest symbol length):

Table 3: Huffman coding symbols

Symbol Occurrences Code

T 6 00

SPACE 4 010

S 4 011

E 4 101

P 2 1100

R 2 1101

O 2 1111

I 1 10010

N 1 10011

U 1 10000

X 1 10001

G 1 11100

F 1 11101

Source: Own illustration

This table of codes can be generated by creating a weighted binary tree first. To create

said tree the symbol count is examined first, in the above example there are 30 charac-

ters in total. Out of those 30 characters, two groups can be formed; one contains 14

characters which contain the most frequently used ones, the other 16 characters are the

least used. The character “T” is most frequent and thus assigned the symbol “00”,

afterward each branch is examined, and the most common character is each group is

assigned a symbol. This step is then performed again until no characters are left to

allocate symbols to:

Elementary Concepts 19

Figure 7: Huffman tree:

Source: Own illustration made with Huffman Tree Generator26

Assignment of symbols within groups of the same occurrence does not matter as there

is no reduction to gain. It only matters that the more common ones are assigned the

smallest possible symbol.

26 For further information, see Huffman Tree Generator.

Evaluation of existing solutions 20

4 Evaluation of existing solutions

The following chapter will introduce existing solutions to partial problems outlined in the

case study. The two main topics discussed will be approaches to synchronize the filesys-

tem and the synchronization of the database in the context of the application described

in the case study. In this thesis, synchronization describes the process of transforming a

given, versioned, filesystem structure or database to a new version. Basis for this trans-

formation process and the following descriptions of file synchronization processes is a

simplified form of the synchronization definition that was also used for the Unison file

synchronizer specification.27 The simplified form used in this thesis assumes that propa-

gation of changes is one-way and overrides any local changes.

4.1 Filesystem

Filesystem synchronization, in its simplified form. is mostly comparable to creating ver-

sions via some form of source control system as both solve the same task of keeping

files and folder structures in order. This is due to having one “master” filesystem which

simply overrides any filesystems which need synchronization, analogous to a “master”

repository in source control systems.

For example, consider the following filesystem layouts. The left filesystem will be called

“version one” and the right filesystem “version two”:

Figure 8: Basic filesystem version example:

Source: Own illustration

27 See Pierce, Benjamin C./ Vouillon, Jérôme (2004), pp 1 – 4.

See also Balasubramaniam, S/ Pierce, Benjamin C. (1998), pp 2 – 4.

Evaluation of existing solutions 21

To synchronize the “version one” filesystem layout to a “version two” filesystem layout,

the following steps need to be taken into account:

- The file “ToBeDeletedSoon.php” needs to be removed.

- The file “NewFeatures.php” needs to be added.

- The file “CoreComponents.php” has changed its file size and thus needs to be

updated as its contents seem to have changed.

- The third file “MoreComponents.php” does not appear to have changed as its file

size is the same. Hence, this file can remain untouched if its contents do not have

changed.

This synchronization process gets more complicated as more files are involved. For ex-

ample, in a standard file hierarchy, there can be files with the same name in different

locations at the same time.28 Those files do not necessary have the same contents, nor

the same meaning as a unique file is defined per its filename in combination with its

location:

Figure 9: Advanced filesystem version example:

Source: Own illustration

Most of the changes which have to be conducted seem analogous to their counterpart

from the basic filesystem example. However, the main distinction is that the file

“main.php” is existent in the API subfolder as well as the Server subfolder. This leads to

the conclusion that the filename itself is not a unique identifier.

To reduce ambiguity files should be referred to by their relative path within a given folder.

In this example, they would be referred to as “API/main.php” and “Server/main.php”. To

28 See Balasubramaniam, S/ Pierce, Benjamin C. (1998), p 6.

Evaluation of existing solutions 22

perform a synchronization of the advanced “version one” filesystem layout to its “version

two” filesystem layout, the following steps need to be taken into account:

- The file “API/basicLogin.php” needs to be removed from the API subfolder.

- The file “API/main.php” needs to be updated.

- The file “GUI/extensions.js” needs to be added to the GUI subfolder.

This process of file synchronization does not take into account that a file could have

changed its contents while its size remained the same.

Evaluation of existing solutions 23

4.2 Git

Git is a version control solution initially created by Linus Torvalds and is widely used

worldwide. The most active provider of repository space, GitHub, currently hosts 52 mil-

lion repositories and has 19 million active users.29 These statistics only include the public

or private hosted repositories in GitHubs system. They do not include self-hosted repos-

itories, local repositories or other hosting providers.

Git was created to build a free version control system that can support the development

of the Linux kernel. Up to that point, the free version of BitKeeper VCS (version control

system) had been used to develop the Linux kernel. However, new restrictions on the

free version of BitKeeper VCS made it unusable for Linux. Linus had to search for alter-

natives. Thus, began the creation of Git. It was meant to offer features, which were not

present in previous free version control systems, namely the following requirements

should be met:30

Facilitate distributed development

Git should enable parallel, independent and simultaneous development in different re-

positories without the need to constantly synchronize with a central repository. This

should allow multiple developers in multiple locations to work on the same project, even

if some were temporarily offline.31

Scale to handle thousands of developers

Because Git was primarily created to facilitate the development of the Linux kernel, sim-

ple distributed development was not the only requirement. The Git system should enable

an enormous amount of contribution from an unknown number of developers each Linux

release. Thus, Git should provide means to integrate those contributions reliably into one

release.32 This requirement stems from the fact that for each Linux kernel release roughly

800 to 1.100 contributors and their contributions have to be handled reliably.33

29 See GitHub (2017).
30 See Loeliger, Jon (2009), pp. 2 – 3.
31 Ibid.
32 Ibid.
33 See Loeliger, Jon (2009), p. 217.

Evaluation of existing solutions 24

Perform quickly and efficiently

Another requirement to handle an enormous amount of contributions while keeping the

version control system stable and reliant, Git should ensure fast network transactions

and a relatively small memory footprint. To achieve these goals, compression and “delta”

techniques would be needed to reduce the amount of stored and transferred data.34 The

“delta” techniques are basically techniques to acquire the delta of two files to alter one

file into the other.

Maintain integrity and trust

To enforce integrity and confidence in a distributed version control system and to ensure

that no files have been altered in the transition from one repository to another Git uses

the SHA-1 cryptographic hash algorithm.35

Enforce accountability / Immutability

As another fundamental aspect of a distributed version control system, Git keeps track

of who changed which files and, if possible why they were changed. This is the reason

why Git enforces a change log on every commit of changes into a repository. While the

contents of the change log are left to the developer who committed the change, enforcing

a change log creates an accountability trail for all changes. This, in combination with

Git’s paradigm of immutability, creates a version control history in which every change

to every file can be traced to its cause. Git’s repository database is per definition immu-

table, which means that once a file has been placed inside, it cannot be removed without

creating a trail of changes. Those files also cannot be altered in any way, as deleting a

file and storing the same file again also results in a log of changes.36

Atomic transactions

At the basis of Git’s repositories are transactional commits, those commits may involve

one or more files and are tracked as a single changeset. Per Git’s design all repository

updates are atomic, which means that either the entire change set of a given commit is

applied to a repository or no change at all. This eliminates the possibility to update a

repository into a partially updated and hence corrupted state.37

34 See Loeliger, Jon (2009), pp. 2 – 3.
35 Ibid.
36 See Loeliger, Jon (2009), pp. 2 – 4.
37 Ibid.

Evaluation of existing solutions 25

Support and encourage branched development / Complete repositories

Branched development is yet another requirement stemming from the Linux kernel era

of Git’s creation as new features would be developed in a version of the repository which

branches of from the main development branch. This feature is especially valuable to

support distributed repositories where no central master repository exists. To support

this feature, one of Git’s essentials is a clean and fast merging of commits which would

conflict upon application. This feature goes along with “complete repositories,” as no

single repository can be a central one which would be queried for historical revisions,

each cloned repository contains all historical revisions for every file and thus is basically

a standalone repository.38

A clean internal design

Git facilitates an object model with simple structures to capture fundamental concepts

for raw data, directory structures, changes and a globally unique identifier model which

was created with a distributed repository management in mind.39

Git allows staging changes before they are committed to a repository. Staging is meant

to be used to prepare a commit to helping to do clean commits. To accommodate various

file changes the following principle to record variations in a Git controlled folder is used:

Figure 10: Git file Status:

Source: Own illustration reproduced from Git40

38 See Loeliger, Jon (2009), pp. 4.
39 Ibid.
40 See Git – Basics.

Evaluation of existing solutions 26

Files in a folder are either tracked or untracked; untracked means that this file has been

removed. Modifying a file leads to Git flagging a file as modified. If changes are staged

or committed, all files return to the status unmodified. The staging step can also be

skipped. This way staging and committing would be treated as if they were the same.

To facilitate development on a project in a shared repository, a developer’s local reposi-

tory can be synchronized with a single remote repository from which the other developers

update their own local repositories:

Figure 11: Git remote repository:

Source: Own illustration reproduced from Git-tower41

The remote repository can simply be cloned to a developer’s machine; this, however,

does not simply create a file and folder structure copy of the remote repository. Instead,

it creates an entire copy of the repository, including the commit history. This local repos-

itory is in all things equal to the remote one. Upon altering files of this local repository,

no other developer has access, even if those changes are committed. As staging and

committing takes place on the local repository. To make changes to the remote reposi-

tory a commit from the local repository can be pushed to it. In return to receive changes

which were made to the remote repository commits can be pulled into the local reposi-

tory.

41 See Git-Tower (2017).

Evaluation of existing solutions 27

4.3 Subversion

Apache Subversion (commonly only referred to as Subversion) is a version control solu-

tion maintained by the Apache Software Foundation and aims to be a universally recog-

nized and adopted open-source software to facilitate centralized version control of files.42

Subversion was developed as a successor to the Concurrent Versions System (CVS),

which was the main version control solution in the open source world. As CVS develop-

ment became more difficult due to fixing flaws with the software the originators of Sub-

version took it upon themselves to create a new software solution which attempts to

avoid CVS flaws.43

Figure 12: Subversion repository:

Source: Own illustration based on Subversion’s architecture44

The Subversion system was designed with a single repository in mind, as such the Sub-

version server is the only entity holding a complete repository. The repository works like

a typical file server, clients can connect to it and write or read files. In contrast to a file

42 See Subversion (2016).
43 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), xiii.
44 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), xvi.

Evaluation of existing solutions 28

server, however, the repository logs all changes which have been made and thus it is

possible for a client to request an arbitrary revision of a file. Every client of the Subversion

server may request to have a local working copy of the repository. This essentially means

that one revision of the repository is copied over to the client as a local file and folder

structure. The working copy is intended as a complete local version to be worked upon,

e.g. a complete PHP project to be used and altered locally. After modifying the working

copy, changes which were made locally would be written to the repository by Subver-

sions client.45

Subversion supports two different modes to deal with concurrent working repositories.

As previously mentioned a single Subversion server may let any number of clients con-

nect and in turn every client can create a working copy and modify said copy. To handle

this problem, one way supported by Subversion is to let clients lock files:

Figure 13: Subversion locks:

45 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), p. 2.

Evaluation of existing solutions 29

Source: Own illustration modified from Subversion46

Locking a file prevents anyone else, except the client, who created the lock to change

the file or lock it themselves. In the previous figure “Developer A” got a lock for file “Ver-

sion 1” to create file version two. “Developer B” is thus unable to get a lock on “Version

2” until the lock is released. As “Developer A” writes his changes to the repository and

releases the lock “Developer B” is able to retrieve “Version 2” and lock the file. This

procedure, however, leads to an increased overhead in coordination as a locked file

needs to be unlocked either by the user holding the lock or a Subversion repository ad-

ministrator. If for example, Developer A forgets to release his lock and is on vacation,

Developer B must contact the Subversion administrator to release the lock.47

As an alternative to locking files to facilitate the parallel development of a repository Sub-

version also offers the “copy-modify-merge” model. In this model, every user may change

his working copy as he wishes. Upon requesting to write the changes back to the

repository, it may happen that another user recently updated a file that was now modified

in the working copy. If this happens, the writing user receives a “file is out of date” error

as it would override changes which were already written. To resolve this problem

changes which were written to the repository can be merged into the working copy. This

is meant to be used to address potential conflicts and then write the resolved version

back to the repository. The “copy-modify-merge” models benefits are that, while working

concurrently, no user of the repository has to wait for writes and locks.48

46 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), xvi.
47 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), p. 4.
48 See Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011), p. 6.

Evaluation of existing solutions 30

4.4 Database

Synchronization of the filesystem was relatively straightforward; synchronization of the

database involves a more complex process. To illustrate the difficulty of synchronizing

the database consider the following example of a simple database table:

Figure 14: Basic database version example:

Source: Own illustration

In this example, there are some changes which need to be performed to turn a version

one table into a version two table. In a simplified form, the needed changes are as fol-

lows:

Table 4: Performed changes to example database

Type Action

Change “id” from 40 to 32 characters

Change “ip_address” from 16 to 45 characters

Evaluation of existing solutions 31

Change “user_agent” from 50 to 80 characters

Remove “creation”, “last_activity”, “users_id”

Rename “activity” to “access”

Add “username”, “user_agent_name”, “user_agent_version”, “platform”, “referrer”

Source: Own illustration

Keep in mind, that this is a simplified form because while transitioning from version one

to version two the primary id column “id” changed its length. This is a special case be-

cause it is a unique identifier and reduction of length leads to a loss of information which

needs to be handled. Precautions need to be taken to treat this information loss if the

“id” column is referenced by another column. Other changes which introduce a loss of

information is the removal of columns, these are taken as necessary information loss as

version two does not use them anymore.

Changing a database table is not only a change of structure. Newly added columns may

need to be initialized or flagged, and relations to other tables may need to be created,

altered or dropped. As seen in Figure 5, all newly created columns are flagged as NotNull

(NN) for example. These changes also need to be taken into consideration when a roll-

back solution is created. To revert those changes, loss of information, which occurs by

removing columns, needs to be taken special care of. This information loss cannot be

reversed by the MySQL database system.

Evaluation of existing solutions 32

4.5 Database Migration Tools

Most database migration tools are specialized solutions which are mostly created by a

software company to resolve their specialized version of the problem to migrate data-

bases from one version to another. As such there are no complete software products

available. The tools can be mostly seen as script libraries, and there is an enormous

amount of scripts written by lone programmers to ease database migration. To use a

suitable base to discuss database migration techniques and tools only those maintained

by a company will be further reviewed and considered in this thesis. The libraries which

will be addressed in this chapter are from SoundCloud and Facebook.

SoundCloud – Large Hadron Migrator

SoundCloud’s Large Hadron Migrator (LHM) library for database migrations was devel-

oped with Ruby on Rails in mind and to mitigate the specific problem of ALTER TABLE

statements on tables which contain millions of records. As altering a table of such size

leads to downtimes of an hour or more. Developers tend to design around the problem

by expanding the database instead of altering it and using join tables. This, however only

leads to the same problem. Adding or changing indices to optimize data access becomes

just as difficult if the database grows even further. The LHM is able to perform migrations

online without locking the table while the system is live. Due to the fact that LHM is written

in Ruby for Ruby on Rails, it needs an active ActiveRecord connection. LHM also pre-

sumes a single numerical primary key which is auto-incremented as per Ruby on Rails

convention. 49

Ruby on Rails limits the use of primary keys for tables to a single auto-incremented inte-

ger column called id. As this is the standard in active record migrations and active record

convention definition of a primary key, there is no support for composite primary keys.50

51 This, in turn, leads to the conclusion that LHM does not natively support composite

primary keys either.

49 See SoundCloud LHM (2016).
50 See Ruby on Rails – AR Migrations.
51 See Ruby on Rails – AR.

Evaluation of existing solutions 33

Facebook – Online Schema Change for MySQL

Facebook’s Online Schema Change (OSC) is a library similar to SoundCloud’s LHM and

was developed for a similar use case, namely to perform ALTER TABLE changes without

a downtime and in a fast and reliable manner. OSC has been built with PHP and is

available as a PHP library. The basic procedure which is performed by OSC to make

changes to a table is as follows:

Table 5: OSC Table Change Phases Overview

Step Description

Copy The table structure which is to be modified is copied.

Build Schema changes are made to the copy and data is loaded into it.

Replay Changes which were made to the original table are copied over to

the copy.

Cut-over The copy table is renamed to the original, and thus both tables are

switched, another replay may be needed.

Source: Own illustration

During the copy phase, the contents of the table which is to about to be modified are

copied in batches of rows into files. This is done to avoid heavy load on the MySQL

server as using “Insert into X select * from Y” would produce. Afterward, two copies of

the table structure are created, one is named deltas and is used to keep track of changes

made to the original while the copy is being modified and loaded with data. This is done

by setting up an update trigger on the original table which keeps tracks of changes and

thus inserts those changes into the deltas table. After creation of the deltas table, the

previously generated files are used to populate the copy table which is now modified.

Afterward, during the replay phase, changes which were made to the deltas table are

replayed to the copy table. To finish the modify operation, during the cut-over phase, the

original and the copy tables get swapped. A cleanup is needed to remove newly created

tables like the deltas table.52 OSC has no special requirements regarding naming of col-

umns or usage of primary keys as the primary key is accessed by its index name. This

leads to a compatibility with composite primary keys.53

52 See Callaghan, Mark (2010).
53 See Facebook OSC, line 827 for further information about handling of primary keys.

Conception 34

5 Conception

Based on the research from the previous chapters, the following chapter of this thesis

will incorporate the explained concepts and existing solutions. Beginning with the plat-

form choice for development, followed by the creation of a general process model based

on the case study (see 2.2) and the goal definition of this thesis. The following describes

how the evaluated solutions can be integrated into a process model. After a recap of the

integration potential of the evaluated solutions, the chapter ends with the definition of a

data model for prototyping.

5.1 Architecture and Platform Choice

To make a platform choice for development the case study’s goals must be taken into

consideration. One goal is to provide a centralized patch library which controls the

distribution of patch packages and release notes on demand:

Figure 15: Patch Library:

Source: Own illustration

Conception 35

This, in turn, means that all instances of application backends need to be connected to

the central patch library on demand if an action is requested which needs data from said

library, like installing patches. To make such connections possible, without integrating a

connection solution into every application supported by the patch library, a separate util-

ity application is needed. Separating the patching utility from the application which it

needs to patch also has the benefit of separation of concerns. In the case of a patch

installation failure, the patch utility application would still be responsive. This is due to

the fact that the source code of the patch utility would not be intertwined with the patched

applications that are then in an unstable state. As such the solution to develop must

consist of two components. One component is the patch library which creates, stores

and delivers patches. The other component is a utility which is installed on the web server

to facilitate automated deployment by connecting to the patch library and perform the

patch installation. This utility is further called “Connector”. To also provide an opportunity

to utilize resources already present on the target server which hosts the application, al-

ready installed software environments can be used:

Figure 16: Patch Connector:

Source: Own illustration

The Connector can be written in PHP to utilize the already installed Apache web server.

As the Connector needs access to the database of the application to perform database

changes, which may be required by patch packages, it also needs access to the data-

base of the application. As the Connector already needs a MySQL database connection

to perform this task, it can also use another database on the same MySQL server to

store version information required for its function. Data necessary for its function are for

Conception 36

example credentials needed to authenticate against the patch library and data about the

currently installed version of the application.

5.2 Process Modelling

Since the case study already divided the whole workflow of patch deployment into three

distinct processes, those processes will now be used as the basis of process modeling

in regard to the previously mentioned structure of different components of the software

solution which is to be created.54

The defined processes can be further broken down as follows:

Step 1: Patch construction

The actual construction of a patch consists of two distinct artifacts, namely the patch

package and its corresponding release note. Defined goal for this process is that the

delta analysis is performed automatically and resulting artifacts are stored in the patch

library. The patch library also needs to know which version was newly created to handle

dependencies correctly. Conducting delta analysis of the filesystem can be performed

by firstly creating two lists of files. One file list contains every unique file identifier and

the hash value of the previous application version and the second file list contains every

unique file identifier and the hash value of the target application version. By iterating

through the entire file list of the current application version and completing the following

check process for each file, the files in need of adding to the application or update can

be identified:

54 See Chapter 2.2.

Conception 37

Figure 17: Filesystem Delta Analysis:

Source: Own illustration

Afterward, the current file list needs to be matched against the previous one again to

determine files which need to be removed upon patching the application; those should

be added to a list of files to be deleted and added to the patch package. As the entire file

Conception 38

is missing, there is no reason to match hash values or other specialized checks. After

completion of the file system delta analysis, the following delta analysis needs to be

conducted for the database by iterating through the tables as if they were files:

Figure 18: Database Delta Analysis:

Source: Own illustration

Conception 39

Each table of the last application version needs to be checked, if it is not in the current

version, the table needs to be removed. If it is, the structure of the table needs to be

checked to determine if it was modified. If a modification is found, the changes need to

be replicated via a SQL statement that is added to the patch package. If a new table was

found which is in the current version, but not in the last application installation, the table

needs to be created.

Step 2: Patch delivery

Patch delivery can be automated through the Connector application. As the Connector

application is able to make a connection to the patch library at any point in time, there is

no need to send the patch packages and release notes to the administrators beforehand.

Therefore the Connector should provide a GUI which can show the current application

version and its applicable release note. The Connector should also be able to list all

available patches and show their dependencies. An administrator can then retrieve

patches and their related release notes on demand through the Connector’s GUI. The

Connector also stores the installed application version, and thus there is no further need

to keep track of installed patches by the administrator. In conclusion, previously men-

tioned patch delivery problems are entirely mitigated by fulfilling these goals of patch

delivery:

- Unreliable transmission

- Human error during delivery (recipients forgotten)

- Human error during storage (wrong order of patch)

Step 3: Patch installation

Patch installation is conducted by the Connector application on demand. If the adminis-

trator accesses the interface of the Connector, the currently active patch version is

shown as well as the patches which can be applied. Upon request of installation, the

patch package is downloaded from the library. The patch package needs to include the

following information, which in turn needs to be extracted by the Connector:

Conception 40

Figure 19: Patch Package Contents:

Source: Own illustration

Installation:

Steps for applying the Patch Packages contents during the installation procedure are as

follows:

- Backup: the backup procedure needs to be performed, on this stage all files

which are about to change need to be stored in a backup location. For the data-

base backup, all tables which are about to change have to be dumped into files.55

In case of drastic alterations of tables, for example changes to primary keys or

similar, specific statements need to be included which revert the database to a

state that can use the backup table.

- Database: afterward the database changes can be applied by executing the ex-

tracted SQL statements.

- Filesystem: the filesystem changes are performed by first copying the files to add

or override into the application's source directory. Afterwards, cleanup is done by

deleting files according to the list provided by the patch package.

55 Reference to chapter 4.5 OSC for MySQL load benefits.

Conception 41

Rollback:

If there are any problems during installation, a rollback procedure needs to be triggered.

This rollback procedure will be performed as follows:

- Filesystem: rollback can be carried out by simply reversing the application of

filesystem changes: namely deleting all files which were included in the list of files

to add or overwrite. Afterward, files which were deleted or overwritten by appli-

cation of the patch can be restored by copying over the old files from the backup

location.

- Database: changes can be reversed by switching the database backup tables

with the changed ones. This, however, would mean that SQL structure state-

ments do not contain primary key definitions, alterations or similar. In that case,

a specific statement to revert those changes would be needed as rollback proce-

dure.

To further illustrate these processes, consider the following figure:

Figure 20: Patch Installation Workflow:

Source: Own illustration

This diagram shows the interactions between the four distinct locations; backup, appli-

cation, Connector and library host. Only the library host is remote, other locations are on

the application host’s system. After requesting the patch package (patch files) other tasks

are done locally through the Connector application. It creates and controls the handling

Conception 42

of backups and thus is able to roll back the application without further requests to the

library.

5.3 Integration of Solutions

The following chapter describes which solutions will be integrated into the prototyping

phase of this thesis. It will also show how the solutions and techniques explained in pre-

vious chapters can be integrated.

Compression

Compression will be utilized to form single-file patch packages out of all necessary files

which are required by a given patch. This makes handling of patch packages easier as

a complete patch can be stored as a single entity. Network connections which transfer

the patch package also just need to transfer a single set of binary data. It also allows to

reduce the file size of a given patch package by utilizing compression. Due to the com-

plete patch package being a single file, compression also helps in providing the means

of obtaining a checksum, as a single set of data is required to obtain one.56

Hashing

To verify integrity of a patch package, the SHA-256 Secure Hashing Algorithm will be

used to assign every patch package its own hash value. This will be used to ensure that

the file transfer was successful and that the file has not been altered in transit.57 To utilize

this functionality, the patch library holds all hash values to its stored patch packages and

transfers the hash value to a requesting Connector before sending the patch package.

After the hash value has been transmitted, another transfer connection will be opened to

obtain the patch package. After receiving the patch package, the Connector is then able

to compute the packages hash independently and check both hashes. Performing this

step with two connections has the benefit to ensure that the checksum is transferred by

a different connection, which, in turn means, that a potential file corruption would need

to affect both connections in order to remain undetected.

Version Control System

Implementation of a Version Control System (VCS) will be utilized if it enables a shortcut

in the implementation of file system synchronization. Both previously discussed systems

56 See chapter 3.3.
57 Ibid.

Conception 43

(Git and Subversion) have drawbacks regarding usage as file synchronization tools when

compared to the defined algorithmic steps to patch an application file system. Drawbacks

of Git for practical usage would be, for example, that the entire repository needs to be

copied into every installation of the application. This also leads to an installation of a Git

client in every Connector application, as otherwise handling of entire Git repositories

would require construction of a system which could handle Git repositories. However,

even if implementation of VCS systems for file synchronization does not prove to be

practical, the patch system should at least support the necessary means to create

patches from Git controlled application installations, as Git could be used in its develop-

ment. This support would at least ignore Git specific files upon delta analysis as they

have no meaning for the usage of the application and thus do not need to be included in

pack packages.

Database Migration Tools

From the mentioned Database Migration Tools, LHM and OSC, the library made by Fa-

cebook will be used as possible.58 This is due to the fact, that LHM is based on the Ruby

on Rails Database schema and thus a Connector application would need to provide a

Ruby on Rails application environment. In addition to the dependency to Ruby, LHM is

constructed to utilize Ruby’s Active Record solution, which means that it does not support

composite primary keys. The application which needs to be patched however may

require a composite primary key, as it is not built upon such an Active Record solution.

Facebook’s OSC also has incompatibilities regarding its usage. As OSC is primarily built

with MySQL version 5.1 in mind. It also checks for this version in its source code and

cannot be used if a connection is made to a newer database server. OSC is also a quite

an old library as it was published in 2010 and not recently updated, as such there is no

guarantee regarding its usage. However, it still can be utilized to form the basis to per-

form the actual database modification through the Connector. OSC has been constructed

to ease the alteration of MySQL tables while retaining the integrity of the database, as

such, it creates partial database backups and delta tables which can be utilized to fulfil

this goal. These goals are already implemented in OSC with PHP and MySQL in mind

and as such can be salvaged to create the Connectors database patch deployment.

58 See chapter 4.5.

Conception 44

5.4 Data model

To provide a holistic handling of automated patch installation, it is necessary to expand

the defined artifacts created during patch construction by adding information about the

steps of applying the patch. This includes installation, backup as well as the rollback

steps necessary in a structured and unambiguous manner which can be utilized by a

program. The previously employed patch creation workflow included most of this infor-

mation in the release note, compiled to be understood by administrators performing the

installation manually.59 For use by a program, a data structure containing the following

would be required:

- Structure format describing file changes

- Structure format describing database changes

- Structure format describing rollback procedure if specified

To store the required information, a data format needs to be used which can be utilized

by both; the patch library and the Connector application. If possible, the format should

be readable by a human and thus should not be binary. For such a task, there are two

widely adopted data exchange formats: XML and JSON. Extensible Markup Language

(XML) is a tag-based text format to store data. Separating content with tags gives them

meaning per the used XML structure60:

Figure 21: Patch Structure XML Example:

Source: Own illustration

59 See chapter 2.2 Patch construction artifacts.
60 See W3C – XML.

Conception 45

As seen in the figure above, all information that had been declared as needed, would be

stored. However, the XML data format is quite verbose as it requires to store information

in a tag enclosed manner. The “Patch Structure XML Example” basically contains the

following information:

- Add “NewFile.php”

- Delete “SoonToBeRemoved.php”

- Modify database structure by executing “NewStructures.sql”

- Add data by executing “NewDefaultSettings.sql”

As can be clearly seen in the example and its associated instructions above, XML used

in this, basic, form is already verbose.

The JavaScript Object Notation (JSON) data format is not as verbose as XML though it

was created with similar goals in mind. JSON was defined to provide a lightweight, text-

based, language-independent data interchange format which was derived from the

ECMAScript Programming Language Standard.61 To revert to the previous example, in

JSON it would look like this:

Figure 22: Patch Structure JSON Example:

Source: Own illustration

61 See Crockford, D. (2006), p. 1.

Conception 46

At first glance the JSON example looks quite similar regarding verbosity. However, due

to a format structure without tags, new files can simply be added without the need to

provide a new open and closing tag for each element. Consider the following example:

Figure 23: Patch Structure JSON Example Extended:

Source: Own illustration

In this example, a lot of file related changes were added, while the JSON structure re-

mained relatively similar and less cluttered. In contrast, consider the necessary structure

for the files in XML:

Conception 47

Figure 24: Patch Structure XML Example Files:

Source: Own illustration

The XML version is cluttered with tags whereas the JSON version uses less space to

describe the same data. Adding more files to the JSON version only increases the array

declaration “files-add”:[“…”, “…”]” slightly while adding new files to the equivalent XML

duplicates its tag-based information for every file.

JSON and XML are both integrated in the PHP runtime as core components62, however

while JSON is integral part of PHP, compilation of the PHP runtime can be done without

the XML library63. Due to this possibility of deactivated XML and the complicated access

to XML parsing (there are many libraries for XML64), JSON will be used. JSON can also

easily accommodate a variety of different information without complicated changes.

62 See PHP – JSON.
63 See PHP – XML.
64 For further information see SimpleXML, DOM and XML parser in PHP

Prototyping 48

6 Prototyping

The prototype solution is built as two standalone PHP applications which communicate

via HTTP. The basic structure for the Connector applications is as follows:

- HTML5 frontend, built with AngularJS to provide a GUI

- PHP endpoints to expose patch functions to frontend

- Local MySQL database to store information about patch controlled application

The basic interactivity between these parts is as follows: the GUI can be requested by

accessing the Connectors base path via a browser, e.g. for a local XAMPP developer

environment, typing “localhost/connector” in the browser's URL field. Endpoints contain

the backend functions which need to be executed to perform patch related tasks. All

endpoints include the same basic PHP file for initialization which establishes a

connection to the Connectors own database and the applications database which it con-

trols. Every access to the endpoint functions is done through the HTML5 GUI via HTTP

calls.

Upon accessing the Connector’s HTML5 GUI, a list of all available patches and their

installation state is shown:

Figure 25: Connector Client - GUI:

Source: Own illustration

The GUI is divided into two parts. On the left side is the navigation, other parts of the

Connector’s functionality are available via links. On the right side is the content area

where applicable information and form data is displayed for the selected functionality.

The before mentioned patch list retrieves the available patch listing from the library ap-

plication and enriches it with locally stored information about the installed patches. In the

library’s database, the following table stores all installed patches:

Prototyping 49

Table 6: Patch Table

Column Type Description

id integer Unique id of the patch package

name varchar Display name of the patch package

version varchar Version identifier

info text JSON object containing patch metadata

data longblob Binary column containing patch archive data

Source: Own illustration

The “patches” table is used by the patch library to store the entirety of available patches.

This makes compatibility between both systems and comparison of patches a non-issue

as the information contained is only needed by the Connector during an installation pro-

cedure and transferred on demand.

The Connector also stores additional information in a “system” table, which contains “key

– value” information:

Table 7: Connector Application State

Name Value

installed_structure JSON object containing the entire file and database structure of

the current application version

installed_versions JSON object containing a list of all installed patches

library_host URL of the Patch Library to connect to

version Application version identifier

Source: Own illustration

Data contained in this table is used to identify the installed application version quickly

and to hold the entirety of the last application structure in a JSON dataset. This is used

later to perform delta analysis. The list of installed versions contains the ids of every

applied patch to display the patch list and enrich it with the information about installation

state.

Prototyping 50

6.1 Delta Analysis

Delta analysis can be started from the “Create” section of the Connector. The “Create”

section offers two buttons “Start Delta Analysis” and “Create Patch Package”, the “Start

Delta Analysis” function must be used first and is built as follows:

Figure 26: Connector Frontend - getDelta:

Source: Own illustration

Upon clicking the button “Start Delta Analysis”, a simple HTTP call is made from the

HTML5 frontend to the Connector’s “create” endpoint. This requests processing accord-

ing to the requested type “delta”. The “delta” action from the “creation” endpoint extracts

the stored information from “installed_structure” first to acquire a starting point for needed

delta checks. Then it begins collecting a flat file list of the entire application folder:

Figure 27: Connector Backend – File Listing:

Source: Own illustration

Collecting said file list is done by recursively iterating through the entire application di-

rectory and storing two values per file: the unique file identifier with a reduced, relative,

path and the calculated sha256 hash of the files contents. The reduced path is due to

Prototyping 51

platform independent storage, file functions in PHP use an absolute path. Further pro-

cessing needs a relative path, thus the absolute path to the applications directory is re-

moved. Directories are not added to the list because they are indirectly stored in every

unique file identifier, if a file is within a directory. For example: “directoryname/file-

name.fileextension” implicitly contains the directory “directoryname”, thus the information

that “directoryname” exists does not need to be determined or stored. Empty directories

are omitted, as they add no value.

Afterwards, there are two arrays:

- $list_new, which contains the entirety of the current application file structure.

- $list_old, which contains the complete file structure of the last version.

Now, enough information is gathered to proceed according to the defined algorithm for

file system delta analysis. As for comparison purposes, two complete lists are required.65

Determination of “added” files that means files which have changed or have been added

and “deleted” files are done as follows:

Figure 28: Connector Backend – File Delta:

Source: Own illustration

These loops represent the defined algorithm in chapter 5.2 in a simplistic form. This is

due to the implicit comparison operation of the “in_array” function. Basically “in_array”

checks if the supplied “needle” entry exists in a supplied “haystack”, which is an array.

This function iterates through the array and checks with an explicit type equality opera-

tion if a matching entry was found. This also enables using an array in place of the “nee-

dle” to check an array of arrays for the occurrence of an array with exactly the same

65 See chapter 5.2 Patch Construction.

Prototyping 52

values. Due to this behavior of the “in_array” function and the previous storing of sha256

hashes in file lists, a simple check if a file entry of the $list_new array is also in $list_old

is enough to determine all changes and added files. Determination of removed files is

basically the reverse operation, checking every entry of $list_old and determine if a file

is not in $list_new. This results in an array containing changes $list_changes[‘changes’]

and an array containing removed files $list_changes[‘removed’].

Afterward, delta analysis for the database needs to be performed. To apply the algorithm

defined in chapter 5.2, the database structure needs to be obtained in a format which

can be acted upon in PHP. This is done by creating another multi-level array structure,

similar to the file lists for the current version $database_new:

Figure 29: Connector Backend – Database Listing:

Source: Own illustration

By using the database connection to the applications database and using MySQL’s

“SHOW TABLE” command, a list of all tables is created. The “SHOW TABLE” command

only lists non-temporary tables.66 This table list is then enriched by information about the

66 See MySQL – SHOW TABLES.

Prototyping 53

columns, the table is made out of by using “SHOW FULL COLUMNS FROM `<table-

name>`”. This command lists technical details about a table’s columns. These details

are needed to determine which changes have been made; the following particulars are

returned:

Table 8: MySQL “SHOW FULL COLUMNS” Result:

Return value Description

Field Name identifier of the column

Type MySQL data type of the column

Collation Collation of character like columns

Null Specifies if Null is an acceptable data value for the column

Key Specifies if the column is a key and if so, which type of key. E.g.

primary, unique

Default Default value of the column. If a value had been omitted during

insertion, this value would be used

Extra Additional information, like auto_increment or on update func-

tions tied to the column

Privileges Displays which privileges are set on the specific column

Comment Displays the database comment for the column

Source: Own illustration based on MySQL67

For the sake of simplification, information about needed privileges and the database

comment are discarded and not used in further comparison.

The array $database_new now contains all structural information about every table in

the applications database and thus is the database equivalent of $list_new. Its counter-

part, $database_old is retrieved from the Connector’s system tables “application_struc-

ture” entry and has the same format:

67 See MySQL – SHOW COLUMNS.

Prototyping 54

Figure 30: Connector Database Structure Example:

Source: Own illustration.

The database structure contains all necessary information to produce an alter table or

create table statement. The actual delta check is as follows:

Figure 31: Connector Backend – Database Delta:

Source: Own illustration

Prototyping 55

By iterating through the current applications database structure, all table entries are

checked against their counterpart from the old version. This is done in a similar way as

the previous check for files, but instead of using “in_array” the equals operation is per-

formed on both entries in question directly.

If a change is detected, that means a table is not exactly like it was before and checks

need to be done for every column of that table. If such a check detects a variation from

$database_old the entry in question is added to $database_changes[‘modified’], which

has the same structure as the complete database structure descriptions but only holds

changed columns. Afterward, the removed tables and columns need to be identified, this

is done like so:

Figure 32: Connector Backend – Delta Removed:

Source: Own illustration

First all table names are checked against the $database_old array to determine if a whole

table was removed. If this is true, the table in question is added to $data-

base_changes[‘removed’]. If the table exists in the new structure, another check is per-

formed to determine if the table equals the old version. If this check fails, every column

of the current version is compared to the new version to determine if a single column has

been removed.

Prototyping 56

Lastly, the result of the delta analysis is sent back to the requesting frontend:

Figure 33: Connector Backend – Delta Result:

Source: Own illustration

The sent data includes change sets for database and file structure and current, complete

structures for the filesystem and database.

6.2 Create Patch Package

After the frontend receives the delta analysis results, it enables the “Create Patch Pack-

age” button which is tied to the “store” function. It also shows the complete result of the

previous delta analysis operation for inspection of correctness by the user. On the first

click, the “store” function displays a form which needs to be filled to proceed creating a

patch package:

Table 9: Connector Create Patch Form

Field Type Description

Patch name Textfield Name to display in patch list

Optional Checkbox Determines if patch increases patch level

Description Textarea Text to display in patch list

SQL to modify database Textarea SQL to upgrade to the current version

SQL to revert database Textarea SQL to revert changes made by the modify SQL

Release note Upload File upload for release note pdf files

Source: Own illustration

The information which has to be provided by the user, is information which cannot be

automatically collected during the delta analysis stage or be created in the next stage.

Prototyping 57

Input such as the patch name and description for display in the patch list and the decision

whether or not the patch is optional needs to be entered by the user who creates the

patch. The release note needs to be created externally as it is a single PDF file which

needs to be uploaded. As an automatic generation of SQL statements by using the de-

tected change sets is beyond the scope of this thesis, the user is prompted to enter a set

of SQL statements which would modify the database and another set which would undo

the changes if applied. To ease this process, the result of the database delta analysis is

shown next to those text areas like so:

Figure 34: Connector Frontend – Show Database Changes:

Source: Own illustration, for a full table example, see appendix 1.

This is necessary information to find the tables in question and to create SQL statements

to alter them accordingly.

After entering the additional required information, activating the “store” function again

sends the change sets and additional data to the Connector’s backend to create a patch.

Figure 35: Connector Frontend – Store:

Source: Own illustration

Prototyping 58

The Connector then proceeds with building the actual patch package. Locally stored in-

formation about the delta analysis is cleared once the response of the “create” endpoint

is retrieved. After evaluation of the supplied data on the backend, the Connector pro-

ceeds by creating a temporary ZIP archive file:

Figure 36: Connector Backend – Create Patch Package: Files

Source: Own illustration

Collecting all files needed to update the application is performed by iterating through the

$files_to_store array which was previously the $list_changes[‘modified’]. The stored rel-

ative paths are extended to an absolute path to the file in question which is then added

to the archive as relative path again. By doing the path handling this way, it is ensured

that paths are always platform independent, as absolute paths are only used when nec-

essary. The $files_to_store array, previously $list_changes[‘modified’] is dumped as

JSON into a temporary file and then stored in the archive as “modified_files.json”. This

procedure is also repeated for $list_changes[‘remove] by dumping $files_to_remove into

another temporary file to build “removed_files.json” and $database_changes to

“database_changes.json”.

Next, the supplied SQL statements are also dumped into a temporary file to be stored

inside of the ZIP archive alongside the previous files as “database_changes.sql” and

“database_changes_rollback.sql”:

Figure 37: Connector Backend – Create Patch Package: Database

Source: Own illustration

Prototyping 59

After this step, all necessary upgrade information is stored, to enable future delta

analysis, however, the entirety of structure arrays needs to be stored too:

Figure 38: Connector Backend – Create Patch Package: Structure

Source: Own illustration

This is done in the same fashion as the previous store procedures. Afterwards the ar-

chive is closed and ready to be transferred to the patch library for storage.

Before the actual transfer takes place, an array containing meta data for storage and

listing the patch package in the Connector’s patch list is created:

Figure 39: Connector Backend – Create Patch Package: Metadata

Source: Own illustration

This is done to quickly access important information about the patch package without

extracting it first. Such information is for example the patch packages SHA-256 hash and

its name and short description for the list view. This meta data array is then embedded

into the actual transfer package which also contains the release note and ZIP archive

binary. To ensure a safe transit of this binary data within a data structure, the base64

encoding algorithm is used to convert it to a text first.

Sending of the patch package is done via an HTTP POST request to the Patch Library’s

“store” endpoint. To do this via PHP, PHPs native implementation of CURL is used.68

68 CURL is a library to transfer data with URLs, for further information see CURL.

Prototyping 60

The Patch Library’s “store” endpoint then receives the complete package and begins to

decode the information contained within to store the patch package in its own database:

Figure 40: Library – Store Endpoint

Source: Own illustration

Storing the actual patch is a two-step process, as the patch package itself is stored in

the `patches` table as described earlier. The second step is storing the release note

separately, as this information is language dependent and thus cannot be stored in the

same table due to normalization reasons.

The result of the storage procedure is then transmitted back to the Connector’s backend

as the backends operation is not completely done by sending the package. The Con-

nector’s local state needs to be updated to reflect performed changes for further delta

analysis and patch installations. This is performed by updating the Connector’s system

table with the gathered information of the previous steps. The entries “version” and “in-

stalled_structure” are updated with the gathered information and the patch packages id,

which was returned from the library, is added to “installed_patches”, as if it was installed

through an installation procedure.

Prototyping 61

6.3 Installation

Installation of a patch package can be performed by clicking the “install?” button69 on an

entry in the Connector’s “List of all available patches”. This operation is only possible if

the patch was recognized as not already installed by checking its id against a list of all

installed patch ids.

The action of clicking said button triggers a call against the Connector’s “apply” endpoint

with the patch packages id and hash value, which proceeds as follows:

- Retrieving the patch package: The requested patch package is retrieved from

the Patch Library’s “retrieve” endpoint by sending the id of the package in ques-

tion. Transfer of the package is done in the same manner as the previous transfer

from the Connector to the Patch Library which was used during the patches cre-

ation. To ensure that the file transfer was done correctly and no information was

altered, the patch archives SHA-256 hash value is computed again and checked

against the value which was transferred together with the id of the package.70 The

retrieved ZIP archive is then decoded and stored in a temporary location to be

accessed by file operations.

- Extracting the packages contents: The contents of the patch packages con-

tents are read into arrays for further usage. The files “modified_files.json” and

“removed_files.json” are merged into a single $file_data array in this step, the file

“removed_files.json” is also copied into $file_list_remove to later perform removal

of the files it describes. The contents of SQL statement files are written in sepa-

rate temporary files to access them via MySQL directly, reasoning behind this

procedure is described more in depth later when modification of the database is

explained.

- Creating a backup of files: On the previous extraction stage the array

$files_data was created, it contains the relative paths of all files which are about

to change. This array is now used in conjunction with the absolute paths of the

application and the backup directory to directly copy files for backup. It is done

this way to catch all modifications as well as all files which are removed after

applying the patch.

69 See appendix 2 for an example of this patch listing.
70 See chapter 5.3 regarding usage of hashing.

Prototyping 62

After these steps have been performed, necessary information for the installation proce-

dure is prepared and the filesystem is ready to be modified, as the backup was just

created.

Filesystem changes:

Modification of files is a straightforward task, all files contained in the patch archives

“files” subdirectory need to be written to the applications directory. If a file is already

present it is simply overwritten:

Figure 41: Connector Backend – File Backup:

Source: Own illustration

To do this, the ZIP archive of the patch package is read again. Every entry which is read

is checked if its path starts with the “files” subfolder. If it is in this subfolder it is a modifi-

cation and not a file like the ones which made up the additional information of the patch

package like for example “complete_structure.json”.

If this was determined successfully, the absolute path of the file in question in the appli-

cations directory is created. Also, its parent directories path is created in the same fash-

ion. Then the directories path is used to check if it is already on the file system, if it is not

present, it is created. This measure was taken to accommodate the possibility of adding

files within new directories with a patch, as the function “file_put_contents” cannot create

directories directly.

Prototyping 63

After applying the file modifications, the file removal procedure is executed to remove

files which are not needed after this patch level. This is done by simply creating the

absolute path of every entry in the previously mentioned $file_list_remove array and de-

leting every file found.

Database changes:

To modify the database in a similar fashion as Facebooks OSC library, the following

functions were created:

- create_extra_tables: This function created two table copies of a given table

within a single MySQL transaction. One is named “<tablename>_mod” and the

other is named “<tablename>_delta”. This is the preparation for further changes.

- create_trigger: This function creates “AFTER INSERT” database trigger state-

ments between a table and its corresponding delta table. This ensures that after

calling this function, all inserts to the original are mirrored to the delta table.

- use_statement: The “use_statement” function is a shortcut to execute SQL

statements directly against the MySQL executable via the command line. This is

done to prevent limitations of the PHP database connection, like loading large

SQL scripts. It also has the benefit that MySQL treats the contents as a single

operation.

- set_original_data: Copies data from the original table to its “_mod” counterpart.

Determination of columns from which to copy and columns which receive values

is done by creating the REPLACE statement in conjunction with the previously

described SHOW COLUMNS command.

- set_delta_data: Copies data from the delta table to its “_mod” counterpart in the

same fashion as “set_original_data”.

- change_name: This function swaps the original table with its “_mod” counterpart.

This is done by first renaming the original to “<tablename>_mod_temp”, then re-

naming “<tablename>_mod” to original and last renaming “<table-

name>_mod_temp” to “<tablename>_mod”.

- delete_delta: Removes the “_delta” counterpart of a given table.

Prototyping 64

These functions describe OSC’s workflow for modifying a table in a simplified form and

are necessary because they have to be applied in loops for every table which is about to

be modified. The first step of applying the patch packages SQL statement is then to

identify table names which have to be modified and creating the extra tables and triggers

required:

Figure 42: Connector Backend – Table Preparation

Source: Own illustration

It is necessary to collect the results of every “create_extra_tables” and “create_trigger”

function call, as all operations have to be successful in order to proceed with applying

the patches SQL file. Otherwise, the database modification would proceed without back-

ups. If operations failed, the corresponding “_delta” tables are deleted, what remains is

the original and its “_mod” counterpart, which can be used to identify why the operation

failed.

Afterward, the patch packages SQL file for modifications is applied to the “_mod” tables

within the database by calling the “use_statement” function. Then the following functions

are then called for every modified table:

- set_original_data

- set_delta_data

- change_name

- delete_delta

Prototyping 65

This first loads the original tables data into the modified version, then the delta data.

Next, it switches the names and cleans up created delta tables.

If this operation was successful for every table, the now called original table is modified

with the SQL statements modifications and the “<tablename>_mod” version contains the

entirety of the old original table, including its data. After this point, the “_mod” version

can be treated as a backup of the original table.

The last operation left is applying changes to the Connector’s internal state storage to

record that the patch has been applied and which installed structure is now present in

database and filesystem. This is done by loading the patch packages contents of “com-

plete_structure.json” into the Connector’s system table as update for “installed_struc-

ture” and updating the “installed_patches” list. This is necessary to be able to provide a

starting point for a delta analysis conducted by this Connector and to properly list patch

installation states.

Testing 66

7 Testing

This chapter describes the tests which have been carried out to verify that the developed

prototype is able to fulfill the goals described and defined in chapter 2.3. As complete

testing of the prototype solution is not feasible, and out of the scope of this thesis, first,

the boundaries and limitations of the tests are explained. Afterward, the results of the

tests are discussed in regard of goal fulfillment.

7.1 Boundaries and Limitations

The basis for the tests is three separate applications which are installed on the same

host system to simplify the testing environment. They also use the same web server and

MySQL server, installed application setup are as follows:

- Test application: The application which is put under control of the Connector for

patch management and delta analysis. It consists of its own MySQL database

“app” which is accessed by its user “app” and a directory on the filesystem where

its application code is stored.71

- Connector: An installation of the prototyped Connector application, installed next

to the test application, it also has its own database and database user “con-

nector”. It is located directly next to the “test application” on the filesystem and is

able to access the test applications directory. The Connector’s system infor-

mation is preloaded with the structure of the initial “test application”.72

- Patch Library: An installation of the prototyped Patch Library application, it also

has its own database, database user and separate filesystem location, commu-

nication to this application is to be done through URLs only.73

The initial state of the “test application” is a basic filesystem and database layout as

follows:74

71 The test application is contained within the “test_application” directories in the digital appendix.
72 The Connector is contained within the “connector” directory in the digital appendix.
73 The Patch Library is contained within the “library” directory in the digital appendix.
74 See digital appendix “appendix/tests/basis/” for exact layout of the example application.

Testing 67

- Filesystem: Three folders which contain a variety of different text files. To check

the Connector’s ability to scan subfolders, one folder contains another directory

which in turn contains more files.

- Database: The database of the test application consists of three tables with no

foreign key constraints, column names are not database unique to test if the col-

umn changes are recognized properly.

To test the defined goals, the following tests will be conducted:

Table 10: Tests

Id Test case Description

1 File add detection Test to check if the prototype correctly identifies files

which have been added to the application.

2 File removal detection Test to check if the prototype correctly identifies re-

moved files and stores this information correctly.

3 File update detection Test to check if changes to already existing files are

recognized and handled properly.

4 Patch package creation Test to check if creation and storage of a complete

patch package were successful and if it contains all

necessary data.

5 Correct patch listing Test to check if retrieval of the patch list from the

Patch Library and matching against the Connector’s

internal system information is correct.

6 Correct patch delivery Test to check if the prototype recognizes if the SHA

hash of a patch package has been modified.

7 Filesystem backup Test to check if the filesystem backup was done cor-

rectly regarding removed files and changes.

8 Filesystem updates Test to check if updates to the filesystem were applied

properly.

9 Database backup Test to check if, after an applied database change, the

“_mod” table is containing a backup of the old version.

10 Database updates Check if a database change is carried out correctly

Source: Own illustration

Testing 68

Every test will be conducted in a self-contained fashion, that means that after every test

all three applications are returned to their respective initial state, the Patch Library may

be preloaded with a patch package if the test requires one. Some tests require tampering

with the database directly to measure results, without installing a second Connector or

disrupting file transmission on purpose.

These special cases are: test 5: “correct patch listing”, as the Connector updates its own

stored patch history after the creation of a patch and thus is unable to create patches

which are in an “uninstalled” state for itself. The other special case is test 6: “correct

patch delivery”, corrupting the ZIP archives data on purpose through network related

tools seems unfeasible. However, the patch packages stored SHA-256 value can be

modified to simulate that behavior.

After each performed step, relevant information is gathered from every application. For

all patch creation related tests that means that the resulting ZIP archive is stored, as well

as the produced meta data information which is retrieved from the patch library. For all

tests which modify the filesystem, the changed application source is stored before cre-

ating the patch package. For database changes however, the tables are exported

through the database administration tool “phpMyAdmin” as SQL statement files. Saving

the database files directly would mean collecting binary data which cannot easily be

viewed or checked for correctness.

Testing 69

7.2 Results

The results were mostly positive, only one test case was performed unsuccessfully:

Table 11: Test Results

Id Test case Result

1 File add detection Successful, the two added files were correctly stored

within “modified_files.json”.

2 File removal detection Successful, three files were removed and properly

written to “removed_files.json”

3 File update detection Unsuccessful, the changed file was recognized as a

modification as well as a removed file.

4 Patch package creation Successful, files were correctly recognized as added

or deleted.

5 Correct patch listing Successful, Patch listing was appended with locally

stored information.

6 Correct patch delivery Successful, the patch list included an SHA hash which

was different from the patch packages own (the first

character was changed), installation canceled.

7 Filesystem backup Successful, all three files to removed were first copied

to the backup location.

8 Filesystem updates Successful, updates were done correctly.

9 Database backup Successful, “users_mod” contained all original data.

10 Database updates Successful, “users” was altered correctly.

Source: Own illustration based on performed tests75

Most of the detections ran flawlessly, detected and stored all information necessary.

However, test 3 proved to be unsuccessful, the changed file was identified as removed

and as a modification. This issue has been mitigated for file installation by removing files

first and then copying over the changes. As such it is only a minor bug.

75 See digital appendix “/tests/” for further information.

Testing 70

In regard to the defined goals in chapter 2.3 the following goals were achieved:

- Patch dependencies: This goal described an automatic handling of patch de-

pendencies, this is implemented in a basic form as version numbering. Incre-

menting version numbers is done automatically and the patch listing checks if

patches were already installed by checking against a list of installed patches. If a

patch is deemed already installed, the Connector provides no means to install it

again. Only patches which have not yet been installed are available for installa-

tion.

- Patch Library: The goal was to provide a centralized platform which stores all

necessary, patch package related, data. This was achieved partially with the

Patch Library application. Patches and their release notes are stored correctly.

However localization of release notes is not entirely implemented, the Patch Li-

brary’s database structure allows it, but the Connector does not currently allow

to choose the language.

- Patch construction: This goal was achieved; the Connector collects all neces-

sary data to build a complete patch package and is able to perform construction

of a package. Delta analysis is done completely automated, as is a collection of

required files and files to remove. A minor bug currently causes collection of

changes as a file removal and change. However, the SQL statements for data-

base updates need to be supplied manually.

- Patch installation: This goal was to provide means to implement the contents

of a patch package in an entirely automated manner. As the Connector is able to

connect to the Patch Library, retrieve a selected patch package and afterward,

update the filesystem and database with a patch package without the need for

human intervention this goal is also achieved.

Estimated Impact 71

8 Estimated Impact

This chapter focuses on the impact of implementing an automated patch deployment

system in the company on which the case study is based. As such the following estimates

are based on the experience of this company in the deployment of its existing solutions.

Therefore, the amount of work required to deliver a patch is well known. The impact of

using an automated patch deployment and control system was estimated very carefully

and conservatively. This, however, does not guarantee or claim that the calculations are

representative for a wider audience. To further diversify discussion about the impact of

using an automated patch deployment and control system, two aspects will be treated

separately; quantitative impact and qualitative impact.

8.1 Quantitative Impact

To measure the quantitative impact of using the automation of the case study’s workflow,

the effort of using the workflow manually needs to be taken into consideration. The fol-

lowing distinctions were made regarding types of patches:

- Major updates: significant changes or addition to features provided by the appli-

cation. This often includes drastic changes to files and database.

- Minor updates: small changes in functionality, additions to existing features.

- Bugfixes: minor changes to correct known malfunction of the application, these

do not alter features.

General effort is also required on a per-patch basis, regardless of the type of patch. This

effort is called “Creation” and describes the necessary work to be done when creating a

patch package. This essential work is mostly made up of delta analysis and description

of the installation procedure. The following table of needed effort describes the work to

be done by the software supplier and the customer regarding different types of patches:

Table 12: Patch Effort:

Task Effort Supplier (in man-days) Effort Customer (in man-days)

Minimum Maximum Minimum Maximum

Major Update 0.5 1 1 2

Estimated Impact 72

Minor Update 0 1 0.5 0.5

Bugfix 0 0.25 0.5 0.5

Creation 1 2 - -

Source: Own illustration based on experience76

Effort on the supplier side consists of test deployments, which depend on the type of

patch. Larger patches usually require a more complicated installation during which one

employee performs installation per release note and another check if all file and database

updates are correctly carried out. Regardless of these test deployments, however, man-

ual creation of a patch package is still required for every patch and consists of manually

performing delta analysis. The longer the needed installation procedure, the longer it

also takes to create a release note which describes the necessary steps to install.

Effort on the customer’s side is higher for different types of patches due to fulfilling doc-

umentation guidelines. This might have an enormous impact, depending on jurisdiction

and regulation e.g. in the financial industry. The larger the installation procedure, the

larger the needed documentation, as every manual step has to be documented. This

procedure has to be repeated for the productive system as well, after all tests on the test

system have been completed.

The estimated amount of effort after implementing an automated patch deployment and

control system is as follows:

Table 13: Patch Effort Adjusted:

Task Effort Supplier (in man-days) Effort Customer (in man-days)

Minimum Maximum Minimum Maximum

Major Update 0 0.5 1 2

Minor Update 0 0 0.25 0.25

Bugfix 0 0 0.5 0.5

Creation 0.5 1 - -

Source: Own illustration based on estimates77

76 The data of this table is based on the experience of the managing director of fidis GmbH and
is by no means representative for general software maintenance effort as it is based on a
single company’s empirical data and processes.

77 The data of this table is based on the estimates of the managing director of fidis GmbH.

Estimated Impact 73

The supplier’s reduction in effort is mainly due to the elimination of manual delta analysis

as that is the most error-prone part of the patch creation step. Required manual effort is

only left in checking the completed patch package and creation of SQL statements which

is also assisted by showing all changes which need to be taken into consideration.

The scaling of manual installation is no longer given, as the installation part is also com-

pletely automated. The needed effort in finding errors in a failed installation is also tre-

mendously reduced as the system keeps track of version numbers, which proved to be

a problem according to the case study. This also usually required another manual delta

analysis to identify what caused the installation failure.78 These reductions in the effort

are also reflected on the customer’s side as only the necessary effort for documentation

are left. All manual tasks which needed to be done are automated, only their results need

to be checked and documented according to the customer’s requirements.

8.2 Qualitative Impact

The qualitative impact is not directly measurable by just changing the used software

maintenance workflow to an automated one as provided by the prototype. To accurately

measure and analyze a possible improvement in software quality, measurement KPIs79

would have to be defined in accordance with ISO 25010, which describes software qual-

ity and how to increase it.

However, it is still possible to draw conclusions to a company’s software quality as the

following benefits can be derived from the error mitigation of using the prototype, even

without accurately defined KPIs:

- Patch creation: An automated delta analysis covers the entirety of filesystem and

database changes, as such, there can be no changes which are not identified

upon creation of a patch package. The automated patch packaging also ensures

that all necessary modifications are included in a package. The automation

leaves no room for missed files or similar.

- Patch delivery: This part had several spots where errors could occur: previously

patch packages were sent to administrators before the patch was installed to an

application. This lead to a necessary overhead on the administrator’s side to store

78 See chapter 2.2.
79 Key Performance Indices (KPI) are used to measure e.g. quality by a defined set of rules.

Estimated Impact 74

patches and apply them in the correct order. As sending patch packages to ad-

ministrators for future usage is now a step which is removed from the workflow

and sending only occurs on-demand, the probability of missing a critical patch is

removed. The Connector also keeps track of already installed patches and com-

pares them with a list of patch packages from the patch library. This entirely

avoids the error-prone parts of the manual workflow of patch delivery.

- Patch installation: The installation procedure does not need a manual detection

of tables or files to backup for a rollback anymore as both steps are now auto-

mated. In addition, the installation itself is also automated. Both automatizations

reduce the possibility of errors.

These benefits ensure that the influence of errors for measuring the quality of a software

product supported with an automated maintenance solution like the prototype is greatly

reduced. And thus, quality regarding error-free deployment and is increased, which nat-

urally also increases user satisfaction due to smaller downtimes in which the application

cannot be accessed. This also leads to the conclusion that errors which are encountered

in the application may be due to an actual bug in the software and not due to an unstable

application, caused by a faulted patch installation. This conclusion was an estimated

guess at best, due to the error-prone nature of the manual process. After implementing

automation, it is most likely the case that an error in the application is an actual bug and

not a side-effect of a faulted installation.

Conclusion 75

9 Conclusion

The focus of this thesis was to optimize the vital process of patch deployment for soft-

ware products to a point where fragile, repetitive parts are solely performed by a proto-

typed, specialized software. The only choices left to a human operator should be where

and when a patch will be deployed, not which technical measures need to be taken to

do so. Boundaries of the work implicated that the software implementation was restricted

to a prototype which uses a standard LAMP application and a specific workflow.

9.1 Summary

The process for creating, distributing and installing patches for the case study’s applica-

tion was outlined and could be viewed as three separate workflows:

- Construction of a patch package

- Delivery of a patch package

- Installation of a patch package

The case study’s workflows formed the basis for a streamlined process of patch handling

but also showed the weaknesses of each separate workflow and probability of error.

Through this examination of the workflows and their respective error spots goals could

be derived which would mitigate or outright eliminate errors. 80 Further examination of the

most repetitive and error burdened parts: detecting changes in the filesystem and data-

base lead to an evaluation of existing solutions for these types of tasks.81

Following the evaluation, a generalized solution encompassing the previously defined

goals and the study’s workflow was designed.82 This software solution was designed to

consist of two separate applications: a “Patch Library” which stores all patches and han-

dles delivery and storage and a patch “Connector”, which handles construction and in-

stallation of patch packages. As both applications could be built with the same technol-

ogy that made up the target application which needs patch handling, there was an op-

80 See Chapter 2.2.
81 See Chapter 4.
82 See Chapter 5.1 - 5.2.

Conclusion 76

portunity to significantly reduce the footprint of the Connector application. This oppor-

tunity was to reuse the technology stack of the case study’s application. This lead to a

concept that would use the target applications MySQL server as well as the PHP runtime

environment. Following this initial platform choice, a generalized abstraction of the case

study’s workflows and necessary information storage were designed. The evaluated soft-

ware solutions were discussed regarding implementation afterward. A closer examina-

tion of the existing solutions revealed that implementation of source control solutions like

SVN or Git to synchronize files leads to the dependency of installing a separate client

program for those solutions and thus a heavily increased footprint of the Connector. 83

This lead to the creation of a prototype which would only recycle parts of discussed so-

lutions and otherwise implement the abstracted algorithms which automated the work-

flows of the case study.84

Afterward, necessary tests for the prototype was defined. These tests were also based

on the goals which were defined earlier and aimed to verify the automation of the case

study’s workflow.

The tests showed that the prototype was fit for its purpose, only a minor bug was found

which could be mitigated.

After testing the prototype, the impact of using such a system was discussed from a

quantitative and qualitative view. This was done to reflect which economic value an au-

tomated workflow and usage of such a system could bring for a company which uses it.

As such the discussion was made with the data from the company which provided the

case study’s workflow.

In conclusion, it can be said that conception and prototyping of a mostly automated patch

deployment and control system were successful in regard to the defined goals and the

added economic value for a company is significant.

83 See Chapter 5.3.
84 See Chapter 6.

Conclusion 77

9.2 Outlook

While conception and prototyping were successful, there is still plenty of room for im-

provements. For example the prototypes GUI was not designed for actual usage but

mainly with functionality in mind. As such it could be improved by showing a graphical

view of delta changes to provide a more accessible means to verify recognized changes.

Another improvement would be to entirely automate the process of database alteration

by generating the needed SQL statements instead of just showing the changes that have

been made and prompting the patch creating user for SQL statements to modify the

database and to revert them.

Also, the prototype provided just the basic functionality to automate the workflow. The

tests showed that there is plenty of room for improvement in handling side-tasks which

affect the workflow, like handling backups. Currently the prototype only produces back-

ups, but otherwise, it does not show which files and database tables are currently held

in a backup state, handling these is left to the Connector’s user. It also gives no actions

to interact with these files.

The concept of the Patch Library itself can also be greatly expanded, as it is currently

nothing more than a remote database access point. The prototype was designed to han-

dle a single application’s patches to test the concept. For real-world usage, however, the

library should be able to support storing patches for different applications. This addition

then would also require a GUI for the library itself. Also, authentication and verification

between both applications are entirely absent in the prototype. This also needs to be

added, as the blind trust between two remote servers is a security risk.

While the prototype automatically increases the application's version number with each

created patch package, there is room for improvement to let the solution handle version

numbering in a semantic way entirely. The chapter 8 “Estimated Impact” differentiates

between different types of patches. This can be used to automate version numbering,

for example for a version number definition like <major version>.<minor version>.<bug-

fix>, e.g. 1.12.8. This could be realized by adding the functionality of selecting which type

of patch was created during the Connector’s patch creation process; the version number

could then be incremented accordingly.

Appendix 78

Appendix

List of Appendices

Appendix 1: JSON Structure for an entire database table 79

Appendix 2: Connector Patch Listing: ... 80

Appendix 3: enclosed CD containing electronic versions of sources 81

Appendix 79

Appendix 1: JSON Structure for an entire database table

Source: Own illustration

Appendix 80

Appendix 2: Connector Patch Listing:

Source: Own illustration

Appendix 81

Appendix 3: enclosed CD containing electronic versions of sources

Full list of contents:

- Electronic versions of online sources

- Electronic version of this Thesis

- Source code of a test application

- Source code of the prototypes Connector application

- Source code of the prototypes Connector application

- SQL statements to create the database for the test application

- SQL statements to create the database for the Connector

- SQL statements to create the database for the Patch Library

- Snapshots of all data gathered during the tests

- Initial versions of all applications already prepared for tests

List of Cited Literature 82

List of Cited Literature

Books

Balasubramaniam, S/ Pierce, Benjamin C. (1998): Balasubramaniam, S; Pierce, Ben-

jamin C: What is a File Synchronizer?. SCSI Technical Report #507, Indiana University,

April 22, 1998.

Chen, Lianping/ Power, Paddy (2015): Chen, Lianping; Power, Paddy: Continuous De-

livery Huge Benefits, but Challenges Too, IEEE Software, March/April 2015.

Farley, David/ Humble, Jez (2010): Farley, David; Humble, Jez: Continuous delivery:

reliable software releases through build, test, and deployment automation, Pearson Ed-

ucation, Boston, August 2010.

Hines, Peter/ Rich, Nick (1997): Hines, Peter; Rich, Nick: The seven value stream map-

ping tools, In International Journal of Operations & Production Management, Vol. 17 Is-

sue 1, 1997.

Huffman, David A. (1952): Huffman, David A.: A Method for the Construction of Mini-

mum-Redundancy Codes, In Proceedings of the IRE, Vol. 40, Issue 9, September 1952.

ISO14764 (1999): International Standard ISO/IEC1474: Information technology – Soft-

ware maintenance, first edition, 15 November 1999.

Lempel, Abraham/ Ziv, Jacob (1977): Lempel, Abraham; Ziv, Jacob: A Universal Algo-

rithm for Sequential Data Compression, In IEEE Transactions of Information Theory, Vol.

IT-23, Issue 3, May 1977.

Loeliger, Jon (2009): Loeliger, Jon: Version Control with Git, O’Reilly Media, first edition,

May 2009.

Office of Information Services (2008): Centers for Medicare & Medicaid Services

(CMS): Selecting a Development Approach, 17 February 2005.

List of Cited Literature 83

Pierce, Benjamin C./ Vouillon, Jérôme (2004): Pierce, Benjamin C.; Vouillon, Jérôme:

What’s in Unison? A Formal Specification and Reference Implementation of a File Syn-

chronizer, Technical Report MS-CIS-03-36, Department of Computer and Information

Science, University of Pennsylvania, 24 February 2004.

Skelton, Matthew/ O’Dell, Chris, (2016): Skelton, Matthew; O’Dell, Chris: Continuous

Delivery with Windows and .NET, O’Reilly Media, first edition, 25 February 2016.

Internet Documents

(All internet documents were last checked on 8 May 2017)

Ambler, Scott W. (2012): Ambler, Scott W.: The Agile System Development Life Cycle

(SDLC), Online, URL: http://www.ambysoft.com/essays/agileLifecycle.html.

Callaghan, Mark (2010): Callaghan, Mark: Online Schema Change for MySQL, Online,

URL: https://www.facebook.com/note.php?note_id=430801045932.

Collins-Sussman, Ben/ Fitzpatrick, Brian W./ Pilato, C. Michael (2011): Collins-Suss-

man, Ben; Fitzpatrick, Brian W.; Pilato, C. Michael: Version Control with Subversion,

Online, URL: http://svnbook.red-bean.com/en/1.7/.

Crockford, D. (2006): Crockford, D.: The application/json Media Type for JavaScript

Object Notation (JSON), Online, URL: https://tools.ietf.org/html/rfc4627.

CURL: curl: command line tool and library, Online, URL: https://curl.haxx.se/.

DB-Engines (2017): solid IT gmbh, DB-Engines Ranking – die Rangliste der populärsten

Datenbankmanagementsysteme, Online, URL: https://db-engines.com/de/ranking.

Deutsch, P. (1996a): Deutsch, P.: DEFLATE Compressed Data Format Specification

version 1.3, Aladdin Enterprises, Online, URL: https://tools.ietf.org/html/rfc1951.

http://www.ambysoft.com/essays/agileLifecycle.html
https://www.facebook.com/note.php?note_id=430801045932
http://svnbook.red-bean.com/en/1.7/
https://tools.ietf.org/html/rfc4627
https://curl.haxx.se/
https://db-engines.com/de/ranking
https://tools.ietf.org/html/rfc1951

List of Cited Literature 84

Deutsch, P. (1996b): Deutsch, P.: GZIP file format specification version 4.3, Aladdin

Enterprises, Online, URL: https://tools.ietf.org/html/rfc1952.

Dougherty (2001): Dougherty, Dale: LAMP: The Open Source Web Platform, Online,

URL: http://www.onlamp.com/pub/a/onlamp/2001/01/25/lamp.html.

Facebook OSC: Online Schema Change aka OSC, Online, URL: http://ba-

zaar.launchpad.net/~mysqlatfacebook/mysqlatfacebook/tools/annotate/head:/osc/On-

lineSchemaChange.php.

Git – Basics: Git Basics – Recording Changes to the Repository, Online, URL:

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.

Git-Tower (2017): fournova Software GmbH: Learn Version Control with Git, Online,

URL: https://www.git-tower.com/learn/git/ebook/en/command-line/remote-reposito-

ries/introduction.

GitHub (2017): GitHub – The world’s leading development platform, Online, URL:

https://github.com/.

Hansen, T. (2011): Hansen, T.: US Secure Hash Algorithms (SHA and SHA-based

HMAC and HKDF), Huawei, Online, URL: https://tools.ietf.org/html/rfc6234.

Huffman Tree Generator: Ligus, Slawek; Huffman Tree Generator, Online, URL:

http://huffman.ooz.ie/.

Humble, Jez (2016): Humble, Jez: Patterns – Continuous Delivery, Online, URL:

https://continuousdelivery.com/implementing/patterns/.

Intel (2013): Intel: Intel SHA Extensions, Online, URL: https://software.intel.com/en-

us/articles/intel-sha-extensions.

Jones, P. (2001): Jones, P.: US Secure Hash Algorithm 1 (SHA1), Motorola, Online,

URL: https://tools.ietf.org/html/rfc3174.

https://tools.ietf.org/html/rfc1952
http://www.onlamp.com/pub/a/onlamp/2001/01/25/lamp.html
http://bazaar.launchpad.net/~mysqlatfacebook/mysqlatfacebook/tools/annotate/head:/osc/OnlineSchemaChange.php
http://bazaar.launchpad.net/~mysqlatfacebook/mysqlatfacebook/tools/annotate/head:/osc/OnlineSchemaChange.php
http://bazaar.launchpad.net/~mysqlatfacebook/mysqlatfacebook/tools/annotate/head:/osc/OnlineSchemaChange.php
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://www.git-tower.com/learn/git/ebook/en/command-line/remote-repositories/introduction
https://www.git-tower.com/learn/git/ebook/en/command-line/remote-repositories/introduction
https://github.com/
https://tools.ietf.org/html/rfc6234
http://huffman.ooz.ie/
https://continuousdelivery.com/implementing/patterns/
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
https://tools.ietf.org/html/rfc3174

List of Cited Literature 85

MySQL - SHOW COLUMNS: MySQL 5.7 Reference Manual – SHOW COLUMNS Syn-

tax, Online, URL: https://dev.mysql.com/doc/refman/5.7/en/show-columns.html.

MySQL - SHOW TABLES: MySQL 5.7 Reference Manual – SHOW TABLES Syntax,

Online, URL: https://dev.mysql.com/doc/refman/5.7/en/show-tables.html.

Netcraft (2014): Netcraft Ltd.: June 2014 Web Server Survey, Online, URL:

https://news.netcraft.com/archives/2014/06/06/june-2014-web-server-survey.html.

PHP – JSON: PHP: Requirements – Manual, Online, URL: http://php.net/man-

ual/en/json.requirements.php.

PHP – XML: PHP: Requirements – Manual, Online, URL: http://php.net/man-

ual/en/xml.requirements.php.

Ruby on Rails – AR: Active Record Basics – Ruby on Rails Guides, Online, URL:

http://guides.rubyonrails.org/active_record_basics.html.

Ruby on Rails - AR Migrations: Active Record Migrations – Ruby on Rails Guides,

Online, URL: http://edgeguides.rubyonrails.org/active_record_migrations.html.

Shattered.it (2017): SHAttered, Online, URL: http://shattered.it/.

SoundCloud LHM (2016): soundcloud/lhm: Online MySQL schema migrations, Online,

URL: https://github.com/soundcloud/lhm.

Subversion (2016): Apache Subversion, Online, URL: https://subversion.apache.org/.

W3C – XML: Extensible Markup Language, Online, URL: https://www.w3.org/XML/.

https://dev.mysql.com/doc/refman/5.7/en/show-columns.html
https://dev.mysql.com/doc/refman/5.7/en/show-tables.html
https://news.netcraft.com/archives/2014/06/06/june-2014-web-server-survey.html
http://php.net/manual/en/json.requirements.php
http://php.net/manual/en/json.requirements.php
http://php.net/manual/en/xml.requirements.php
http://php.net/manual/en/xml.requirements.php
http://guides.rubyonrails.org/active_record_basics.html
http://edgeguides.rubyonrails.org/active_record_migrations.html
http://shattered.it/
https://github.com/soundcloud/lhm
https://subversion.apache.org/
https://www.w3.org/XML/

Ehrenwörtliche Erklärung 86

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Masterthesis selbständig angefertigt habe.

Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt.

Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich

gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form ganz oder teilweise noch kei-

ner Prüfungsbehörde vorgelegen.

Düsseldorf, 08.05.2017

Ort, Datum Unterschrift

